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Abstract: 

The upwards position of a simple pendulum is an unstable point. However, if a high frequency 

oscillation is applied to the base, the vertical position becomes stable. The stabilization of the vertical 

position with high driving frequencies has a well-known solution from stability analysis with an 

effective potential [3].  In our project, we studied the stability of the pendulum for arbitrary drive angles. 

The model is compared to actual experimental data from a physical pendulum where an aluminum rod 

attached to a jigsaw is the inverted pendulum. 



Introduction 

The model of the simple pendulum problem is a well-studied dynamical system. The governing 

equation for the simple pendulum is 
   

   
 
 

 
      , where   is gravitational acceleration, 𝑙  is the 

length of the pendulum, and   is the angular displacement about downward vertical. When the 

pendulum is given no energy, it will statically hang down at    .  If the pendulum is given a little bit 

of kinetic energy, the pendulum will oscillate about    .  Theoretically, if the pendulum contains a 

specific amount of energy, the pendulum can stay still at or asymptotically approach the standing up 

position at   𝜋.  If the pendulum contains even more energy, the pendulum will continuously swing 

around and around in either the clockwise or counter-clockwise direction. 

The inverted pendulum system consists of a pendulum with its center of mass above its pivot point 

which is mounted on the base with a pin. However, a pendulum at this position is unstable – even a 

small disturbance can cause it to swing down. In our model, we applied a sinusoidal oscillation to the 

pin at some driving angle    measured from the downward position. It is well-known that for vertical 

oscillations, if the oscillation is strong enough and/or fast enough, the inverted position of the pendulum 

will become stable. The goal of our study is to analyze and simulate the stabilization of the inverted 

pendulum. 

In our study, we used methods from Lagrangian mechanics and the Euler- Lagrange equation to 

derive the equation of motion. Numerical analysis was used to find the stability angle using MATLAB’s 

ODE 45 method. MATLAB solves the derived governing equation with three driving angles of the 

pendulum. Then we applied averaging techniques in order to determine an effective potential energy of 

the driven pendulum. Applying the derivative tests for stability using the effective potential, we 

analyzed the stability of the pendulum for different  . A bifurcation diagram was developed base on this 

analysis. We developed phase portraits for the driven pendulum based on the effective potential and 

developed graphical dynamic manifolds to represent the behavior of from these phase portraits. The 

experimental data was collected using an aluminum rod attached to a jigsaw. Both the minimum 

frequency for stability and the region of stability were experimentally measured. 

 



Theory 

Consider a two-dimensional model for the driven pendulum where the pendulum rotates in the same 

plane as the driving oscillations.  In the figure to the right, gravity is assumed to be acting downward.  

The horizontal x-axis is defined with positive to the right and the vertical y-axis is defined with positive 

pointing upward.  Angles are measured from downward (0
o
) with clockwise being positive. The table 

below describes the variables we used. 

 

Symbol Meaning 

  Time 

     Position of pendulum’s center of mass 

  Acceleration due to gravity 

  Angle of deviation of pendulum 

  Mass of pendulum 

𝑙 Distance from center of mass to base 

   Rotational inertia about base 

  Effective length of pendulum (
  

   
) 

   
Natural frequency of pendulum (√

 

 
) 

   Drive angle of the base 

   Drive frequency 

       x- and y- amplitudes of the driving 

 

We applied principles from Lagrangian mechanics and the Euler-Lagrange equation to the driven 

pendulum in order to find the governing equation of motion.  The Lagrangian ℒ  for Newtonian 

mechanics is the difference between the kinetic T and potential   energies: 

(1)          ℒ  T − V 

The equation of motion is derived from the Euler-Lagrange equation: 

(2)          
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The kinetic energy of the pendulum was decomposed as the sum of rotational    and translational 

kinetic energies    and    [2].  The potential energy is the product of the weight    of the pendulum 

with the height   of its center of mass. 
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(7)        −  (𝑙 cos     cos(   )) 

After solving for kinetic and potential energy using equations (3) – (7), we plugged the energies into 

equations (1) and (2) to find the equation of motion: 

 

     ̈    𝑙 sin     𝑙  
2(cos   sin  − sin   cos  ) cos      

 

We introduced an effective length   of the pendulum where: 

  
  
 𝑙

 

Making this substitution, we have our equation of motion: 

(8)     ̈  
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 We introduced three dimensionless parameters and an expression for the driving effects:   is a 

non-dimensional time,   is a frequency parameter,   is a length parameter and  (   ) is the expression 

representing effects caused by the driving. 

         
𝜔 
 

𝜔𝑑
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   is equal to the full periods of oscillation the base has gone through since some initial time.    is 

inversely proportional to the drive frequency; smaller   represents faster drive frequencies.    is 

proportional to the amplitude of the driving oscillations.  Writing our equation of motion in terms of 



these dimensionless parameters gives us the non-dimensional form of the equation of motion: 

 (9)    
   

 𝜏 
  sin    sin( −   ) cos     

 

Computational Analysis 

 Using the derived governing equation of motion from the Lagrangian analysis, we can take a 

numerical look at how any particular pendulum will behave when driven at any particular angle. For the 

purposes of our analysis, we are using the parameters associated with our Black and Decker jigsaw, 

including its effective length, driving frequency, and driving amplitude. By implementing Matlab’s 

ODE45 method, we can set the initial angle and initial velocity for the pendulum and plot the solution 

for the pendulum’s angle vs the time passed since the pendulum’s release. ODE45 uses a Runge-Kutta 

variable step method to solve our differential equation, which Matlab then plots. We decided to use this 

method for three different driving angles, as follows: 

    ; 𝑟 𝑣𝑒  𝑎𝑏𝑜𝑢   ℎ𝑒 𝑣𝑒𝑟  𝑐𝑎𝑙 

   
𝜋

4
; 𝑟 𝑣𝑒  𝑎𝑏𝑜𝑢   ℎ𝑒 𝑑 𝑎 𝑜 𝑎𝑙 

   
𝜋

2
; 𝑟 𝑣𝑒  𝑎𝑏𝑜𝑢   ℎ𝑒 ℎ𝑜𝑟 𝑧𝑜  𝑎𝑙 

 For the sake of avoiding redundancy, symmetrical angles have been disregarded. By setting 

appropriate initial conditions, we have observed oscillatory behavior for each driving angle, indicating 

the stability points therein.  The following are figures taken from our Matlab simulations.  The green 

lines represent driving angles while red lines represent determined average angles found from the 

analysis. 

 

 



 

 

 

 

 

As expected, the stability point for the horizontal driving angle is located below the horizontal, 

due to gravity. Notably, the diagonal driving angle has produced differing results from the other two 

driving angles. It oscillates about 0, as expected, but with lengthy and wide oscillations. This is most 

likely due to the volatility of the equilibrium angle as the angle slightly increases from
𝜋

4
. Further analysis 

and experimentation will test the accuracy of this model with the actual behavior of the jigsaw. 

 

 



Averaging Methods & Effective Potential 

We applied averaging techniques and found the average or effective potential energy of the driven 

pendulum.  The effective potential      will be a measure of the average potential energy the pendulum 

has at certain pendulum angles of deviation   [1].  We did this by averaging the potential energy over a 

period of the driving oscillation.  The first step is to separate the slow and fast components of the 

pendulum.    is the slower angle of the pendulum while   is the rapid oscillations of the base.   ( ) is 

the slower force of gravity while  (   ) is the rapidly oscillating force from the driving. 

(10)        ̈    ( ̈   ̈)  ( ( )   (   )) 

Considering   as the difference between   and  , we can do a first-order Taylor approximation to 

(10).  Making the assumption that   is insignificantly small and    is significantly large, we can ignore 

negligible terms.  After averaging the equation (10) over the period of oscillations of the base, we 

derived equation (11). 

(11)        ̈ ≅   ( )  〈
  

  
(   ) 〉 

Here is where we see the interaction of the two scales: large-and-slow and small-and-fast. 

Usually, small terms are insignificant and have little effect on the macroscopic behavior of a system.  

But, in the case of the driven pendulum, we see that the swing of the pendulum is related to the time-

derivatives of the fast scale.  The derivatives of the fast scale are proportional to the square of the 

driving frequency   
2 . 

Now, let’s define the     : 
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− 𝑈𝑒𝑓𝑓
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Writing the forces using the terms from the equation of motion, we have: 

 ( )      
2 sin      (   )  −    

2   (   ) 

Using these expressions for force and plugging them into (11) and (12), we solved for     : 
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With     , we analyzed the stability of the pendulum for different  .  Equilibrium angles     are 



predicted to occur where the derivative of (13) evaluates to zero: 

(14)    
 𝑈𝑒𝑓𝑓

  
       

2 sin  (
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2
cos 2  cos      ) 

There are three different types of equilibrium angles: hanging down (     ), standing up (    𝜋), or 

leaning to the side (    ± arccos (
2𝛾

𝛼 cos2 𝑑
)).  To determine whether these equilibrium angles are 

stable or unstable, we looked to see if the second derivative of (13) at these angles is positive – meaning 

stable – or negative – meaning unstable. 

(15)    
  𝑈𝑒𝑓𝑓

   
     

2 (
𝛼 

2
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The conditions for stability are summarize in the table below for each equilibrium: 

 

 Using (13), we used MatLab to make surface plots of      as a function of drive angle    and 

pendulum angle  .  Then, we also used the stability conditions summarized in the last table to create a 

bifurcation diagram for the pendulum.  Surface plots and bifurcation diagrams are shown below for the 

undriven – to the left – and driven – on the right – pendulums. 
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Phase Portraits & Dynamic Manifolds 

 The phase portrait of the pendulum is a plot of angular velocity  ̇ versus angular displacement  .  

The plots of the phase portraits are made by modeling the motion of the pendulum as a ball rolling along 

a 2D contour laid out by the effective potential of the pendulum.  Consider the following plot of 

    versus   for vertical driving angle    𝜋. 

 

 If we consider a ball rolling along the top of the curve by a fictional downward force of gravity, 

then we find the acceleration of the ball to be: 

(16)      ̈  −𝐺 sin (arctan (
 𝑈𝑒𝑓𝑓

  
)) 
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 Where 𝐺  is related to some fictitious force of gravity related to the resolution of the phase 

portrait.  Using (16), we created the following phase portraits for the horizontally and vertically driven 

pendulums.  We also show the phase portrait for the simple non-driven pendulum. 

 

 

 



 If we consider the periodic nature of the phase portrait, we can imagine taking the ends of the 

portrait at   −𝜋 and   𝜋 and wrapping them around and gluing them together to form a cylindrical 

surface.  Also, if we map each contour on this surface to a certain energy level, then we will have a 

surface that graphically represents the motion of the pendulum which is mapped to the energy level 

corresponding to that behavior.  This is our dynamic manifold.  Below we show dynamic manifolds 

made in Mathematica for the simple non-driven pendulum, horizontally, and vertically driven 

pendulums. 

 

Experimentation 

We tested our theory with a Black and Decker JS515 Jigsaw. Attached to the jigsaw was a metal 

rod to act as the pendulum. Due to time and money restraints, we 

were only able to study this phenomenon with video clips from 

previous years. With a high speed camera, videos were shot at 

6000 frames per second and played at 29.9 frames per second, so 

200.669 seconds in the video is actually 1 second in real life. For 

our experiment, we used three different videos: two with the 

pendulum being driven vertically at different frequencies and one horizontally. Unfortunately we 

weren’t given a video with the pendulum being driven with a diagonal angle. Using frame-by-frame 



analysis and on-screen measurements, we were able to determine the stability angles for each video. Our 

results are summarized in the 

following table. 

When we compare our 

experimental results with our 

theoretical results, we find our 

stability angles coincide with 

what we expected them to be. 

But when we compare our 

experimental frequencies to the theoretical ones, they seem to be way off. In reality they are off by about 

four degrees of error (4.87%). This is most likely due to the fact that we used data about the jigsaw from 

the owner’s manual and each jigsaw is slightly different because of usage and the modifications made to 

the jigsaw.  The error may also come from our assumption that friction is insignificant in our model. 

 

Conclusion 

 In our work, we analyzed the stability of the inverted pendulum caused by the oscillating base 

and demonstrated the case through computational analysis, averaging techniques, and experimentation.  

We extended our analysis to sinusoidally oscillating bases at any arbitrary constant driving angle.  After 

analyzing the stability of the pendulum for arbitrary drive angles, we applied the same three methods – 

computational analysis, averaging techniques, and experimentation – to the model.  The theoretical 

predictions proposed by the averaging techniques are verified by the computational analysis which is 

further supported by the experimentation. 

 

Future Work 

 So far, the results of our analysis have applied to a driven pendulum with very high driving 

frequencies relative to the natural frequency of pendulum:   ≫    or  ≪ 1.  We haven’t answered the 

question: “How fast or how strong do we have to drive the pendulum in order to stabilize these non-



intuitive angles?”  In future work, our group hopes to find these critical driving frequencies –  𝑐 and  𝑐 

– and critical driving amplitudes –  𝑐 and  𝑐 – which separate realms of behavior of the pendulum. 

 We have also begun work in analyzing the behavior of driven multiple-bar pendulums – bars 

linked end-to-end with one of the bars in the chain fixed to a driving base.  For example, a two-bar 

pendulum is commonly referred to as a double-pendulum. 
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