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It is experimentally observed that bubbles will sometimes sink to the bottom of their 

container. This strange phenomenon is only observed when the container is oscillating vertically 

(coaxial with gravity). A good example of this in real life was given to us anecdotally by Dr. 

Gabitov. In the early stages of 3-stage rocket testing, many rockets would explode shortly after 

take-off resulting in massive damages and wasted resources. It was later determined that the 

pressure sensors, that detonated small charges to separate the sections of the rocket mid-flight, 

were being triggered much too soon. This resulted in the fuel at the top of the tank being ignited 

which caused the uncontrolled explosion. The reason why the pressure sensors were being 

triggered too soon is that the vertical vibration of the rocket at take-off forced all the air bubbles 

in the fuel tank to sink to the bottom. This generated a region of very low pressure at the bottom 

of the fuel tank where the aforementioned sensor was placed. This result, and other experiments, 

spurred an interest into the behavior of bubbles in oscillating fluids. 

 

The physical action responsible for the sinking bubble is a properly called added mass 

[1]. The basic idea is that the bubble must displace the water around it in order to move. This 

makes the bubble itself seem like it has more inertia than it actually does. How does this help the 

bubble move downward? To understand that first we must talk about the volume of the bubble. 

We modeled the bubble to be a sphere, so its radius is all we need to determine its volume and 

vice-versa. In addition, we modeled the bubble to be compressible. This means that its volume is 

changing as more or less pressure is exerted on it. From fluid mechanics, we learned the pressure 

in a fluid is determined solely by the depth in that fluid. The deeper you go, the more pressure 

you feel. Thus the size (volume) of the bubble will be smaller as it approaches the bottom of the 

container. This is the most important feature because the added mass increases with the size of 

the bubble. This makes sense because the larger an object is, the more water it has to push out of 

the way in order to move. This means the added mass will resist the motion upwards in the tank 

more than downwards because the size of the bubble gets bigger as it moves up and smaller as it 

moves down. Because the tank of water is oscillating, the bubble moves both up and down in the 

water allowing it to sink more than it rises as the tank is shaken. If the conditions are correct, the 

added mass will be the strongest force the bubble experiences and this will cause the bubble to 

sink. 

 What we mean by conditions are the following: the initial depth of the bubble, the 

amplitude of oscillations, and the frequency of oscillations. We take the size of the bubble to 

always be small (sufficiently small enough to exhibit this behavior) as well as the pressure 

outside the water to be large enough that everything in the water behaves nicely. Still there are 

other important forces on the bubble that we must take into account.  

The first is the force from the rest of the water. Since the entire container is shaking, the 

water pushes on the bubble in the same direction the tank is shaking, regardless of what direction 

the bubble is trying to move.  

There is also a drag force. This is basically like friction only stronger. Any time an object 

moves through a fluid (like a ball through air, or a bubble through water) it is in contact at all 

sides with the fluid. This creates a force opposing motion that depends on the surface area of the 

bubble and the speed at which the bubble is moving through the water. 



There is also a so-called Archimedes force on the bubble. The Archimedes principle 

states that the volume displaced by an object in water will exert an equal and opposite force on 

that object. That means there is a constant upward force proportional to the volume of the 

bubble. This principle is why boats float and why bubbles normally rise to the top of their 

containers. 

And lastly we considered the weight of the bubble. Gravity pulls constantly downward on 

the bubble since it has a small mass. 

Using fluid mechanics and the basic assumption that the events in the container are 

quasistatic, we were able to model the motion of the bubble in an oscillating container. 

 

 
To model the sinking bubble problem we start with a few basic assumptions. We have an 

open container with a water level a distance  from the bottom. A bubble then pre-exists in the 

water at a depth  below the surface of the water. This bubble is spherical and compressible 

which means that its radius will change and its volume depends only on the radius. In addition, 

we apply small amplitude oscillation of magnitude A to the container at an angular frequency . 

Thus, the vertical motion of the tank is characterized by 

 
Then we considered the mathematical meaning of each force. First of all, the Archimedes 

force which is buoyant force is always upward, so it is negative with 

 

Since the density of water and gravitational acceleration are both constant, the buoyancy 

force is proportional to the volume of bubble. When bubble is at the bottom of tank, the volume 

is smaller, so the Archimedes force is smaller as well. 

 The equation for the drag force is 

 

 is the drag coefficient and it is related to the viscosity of the fluid. From this equation, 

we see that the drag force is proportional to square of velocity and the surface area. As the depth 

of the bubble decreases, the surface area increases, so friction is proportionately larger. 

 We now get to the reason why the bubble can sink: added mass. The bubble has to 

displace the water around it to move. In the case of bubble floating, the water above the bubble’s 

surface is barrier for bubble to move up. In order to move up, it has to push this water out of its 

way. In this process this water can be treated as extra mass which bubble needs to carry around 



to be able to move. That result of this phenomenon is a larger observed inertia � � � � �� 
 where � is the intrinsic mass of the bubble. 
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is the added mass, which changes with time because we assume the bubble is moving due to the 

oscillating fluid. Also when bubble’s position stays constant, the added mass is not observable 

because the inertial mass of the bubble is not observable. 

In the process of developing the governing equation, we consider Newton’s 2nd Law 
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 After achieving the working equation, the acceleration of the depth was solved for to 

allow for a numerical integration method to solve it. A velocity-verlet integration method was 

implemented to advance to depth as a function of time. This involves advancing the velocity of 

the bubble as a function of time and then advancing the position based upon the time-stepped 

velocity. 

 Using this integration method, the depth of the bubble is advanced over many time steps. 

To do so we chose the following parameter values and varied the initial depth and oscillation 

frequency to view different behavioral regions. �� � 0.15 � 6� � 0.5 � � � 0.002 � 7� � 0.0029 � 
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By doing so, we produced the following three graphs which only vary in terms of the 

oscillation frequency.   

 



 
 

 

 
 

There are three types of end behavior: the bubble sinks, the bubble floats, or the bubble is 

trapped near its initial depth. To further show this behavior, a bifurcation diagram is produced by 

using the above parameters and by performing the integration over �� from 0 to 6� with a step 
size of 0.01 ∗ 6� meters and �  from 150 to 310 with a step size of 1 =

>. This produces the three 
dimensional bifurcation diagram that can be seen below. 



 

 
 

We limit the range of initial position to starting within the water tank. We limit the 

frequency of oscillation by the requirements of assumptions made during the derivation of the 

working equation. For greater than 310, the cavitation requirement no longer holds, and for 

 less than 150 the vibrations are not strong. 

From this diagram, we can see that there are two stable solutions, the sinking and floating 

bubble, and an unstable solution, the trapped bubble, which agrees with our original simulations. 

Analyzing the bifurcation diagram can tell us a few things. Examining behavior of the 

system for small  shows that there is no initial height at which the bubble can be placed that 

will cause the bubble to sink, the bubble will float even if initially placed at its maximum depth. 

Now we can consider the behavior of the solutions for small initial depth. The bifurcation 

diagram indicates that there does not exist an oscillation frequency which will cause the bubble 

to sink if it is placed at a small enough initial depth. This is only true for our ranges of , as it 

appears that the bifurcation diagram has not turned around entirely yet at . A 

restructuring of the original derivation of the working equation that would allow for  is 

needed to confirm whether or not the bifurcation diagram turns around at large  and small . 

Computational analysis shows that our model of a bubble in an oscillating tank displays 

three sets of behavior. It also shows that there are two clear timescales of the bubble’s motion: 

the rapid position changes and the drift velocity to the final state. This confirms the assumption 

of two well defined timescales that we plan to use to separate the working equation and 

analytically solve it.  

 

 In the absence of oscillations, bubbles do not sink.  This is due to the buoyancy force 

being much greater than the gravitational force since the mass of the bubble is very small.  When 

oscillations are added to the system, the bubble gains an added mass which is an apparent inertial 

increase that results from water being displaced as the bubble moves in the fluid.  When the 

oscillations are fast enough, the added mass will cause the downward acceleration due to gravity 

to be greater than the upwards buoyancy acceleration.  Thus, the bubble sinks. 

 Our computational results showed that the two most important factors in the behavior of 

the bubble in the oscillating fluid are the frequency of oscillations and the initial depth of the 

bubble.  If the bubble initially begins at a depth that is too close to the top of the fluid containing 



vessel, it will not sink regardless of the oscillating frequency.  This is due to the overall 

downward force from the water above the bubble is small enough compared to the buoyancy 

force that the added mass from the oscillations cannot overcome the upward force.  If the bubble 

starts at a large depth, lower frequencies of oscillations can be used to cause bubble to sink.  This 

is because at the greater depths, the downward force from the water above the bubble is large, so 

only a small added mass is needed to overcome the buoyancy force.  For each frequency there is 

a special initial depth at which the bubble will remain stationary in the fluid.  This is because the 

force from the above water combined with the added mass is perfectly balanced with the 

buoyancy force. 

 The frequency of oscillations is also a very important parameter in the behavior of the 

bubble.  If the frequency is too low, the added mass of the bubble will never be enough to 

overcome the buoyancy.  At large frequencies, the added mass is also large so the bubble can 

sink at smaller initial depths.  The relationship between the initial depth, frequency of oscillation, 

and behavior of the bubble is well shown in the bifurcation diagram. 

 The next step in the analysis of the sinking bubble is to find the time averaged 

behavior.  As seen in the computational results, the bubbles position oscillates rapidly about a 

slowly changing position.  The interesting part of this system (sinking of floating) occurs on a 

slower timescale than the oscillations.  To find the time averaged solution, we will use the 

technique described in Vibrational Mechanics [3]. In this technique to position of the bubble is 

assumed to be the sum of two solutions: one that occurs on a slow time scale, t, and one that 

occurs on a fast time scale, ?. �$�% � @$�% � A$?% 
Here, it is assumed that the slow solution, @$�% essentially does not change over the period of A, 

so the average value of �$�% over the period of A is equal to @$�%.  〈�$�%〉  � 〈@$�%〉 � 〈A$?%〉 � 〈@$�%〉 
Since @$�% does not change over one period, the average value of A over the period is 

equal to zero. Therefore the average value of �$�% over the period is equal to @$�%. 〈�$�%〉  � @$�% 
Using this method, we will attempt to solve for the average position of the bubble as a 

function of time both analytically and numerically. 

 After solving for the average motion, we may also want to consider the behavior of the 

system under different conditions.  For example, since the sinking bubble became a problem 

during the flight of rockets, it would be reasonable to explore the system’s behavior in an 

environment in which the external pressure is very low, such as on the moon.  Additionally, this 

model assumes the container is completely rigid, so adding elasticity to the container as it 

oscillates may produce interesting results.  Finally, we may want to consider the behavior of 

clusters of bubbles.  In the paper by Kana and Dodge, sinking bubbles were observed to create 

large bubble clusters at the bottom of the tank which led to violent behavior in the system [2]. 
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