ENERGY FLOWS IN ELECTRICAL GRIDS

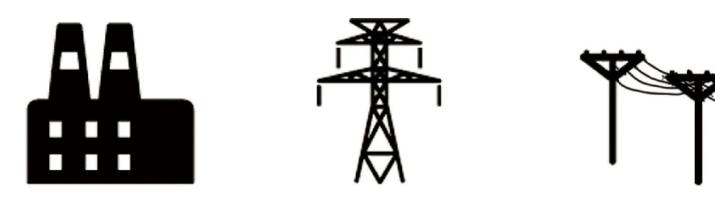
Ruolin Fan Stephanie Greiner Ahmed Jasim Weide Peng Chihwei Yang Mentor: Steven Rosenthal

Generation of Electricity



Generation of Electricity

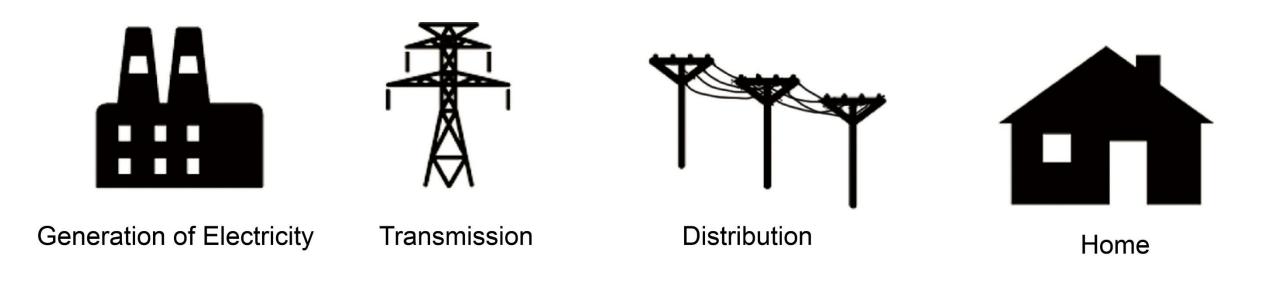
Transmission



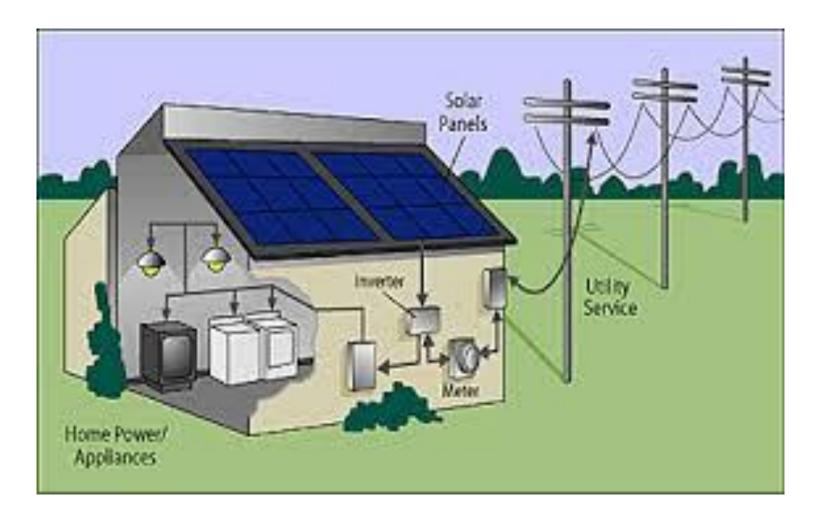
Generation of Electricity

Transmission

Distribution



APPLICATIONS



MOTIVATION

- Voltage fluctuates along a feeder line
 - Having consumers also produce is a strain on the grid
- Better integration of renewable energy sources without causing instability
- Goal: To model the effects of variability power along the electrical line.

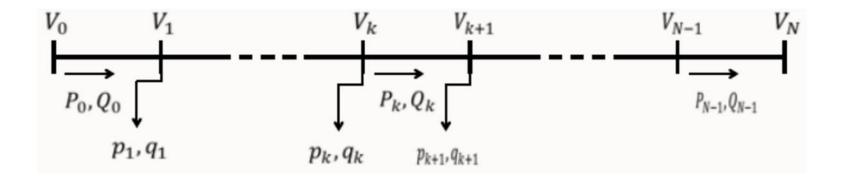
TERMS

DistFlow ODEs variables

- k = 0,...,N-1 enumerates buses of the feeder (k=consumers)
- P_k is real power flowing from bus k to bus k + 1
 - Real power is energy that can be used to do work
- Q_k is reactive power flowing from bus k to bus k + 1
 - Reactive power is needed in an alternating current transmission system to support the transfer of real power over the network
- p_k and q_k are net consumption for consumers
- r_k, x_k represent the resistance and inductance of the line element connecting bus k to bus k+1

VISUAL MODEL

General idea for how energy flows in electrical grids.



THE DISCRETE MODEL

DistFlow Equations

$$P_{k+1} - P_k = p_k - r_k \frac{P_k^2 + Q_k^2}{v_k^2}$$
$$Q_{k+1} - Q_k = q_k - x_k \frac{P_k^2 + Q_k^2}{v_k^2}$$

$$v_{k+1}^2 - v_k^2 = -2(r_k P_k + x_k Q_k) - (r_k^2 + x_k^2) \frac{P_k^2 + Q_k^2}{v_k^2}$$

with boundary condition $P_{N+1} = Q_{N+1} = 0$, $v_0 = 1$

HOMOGENIZATION

- Large number of consumers (N >> 1)
- Continuous form with limit $N \rightarrow \infty$

DistFlow ODEs (B.V.P.)

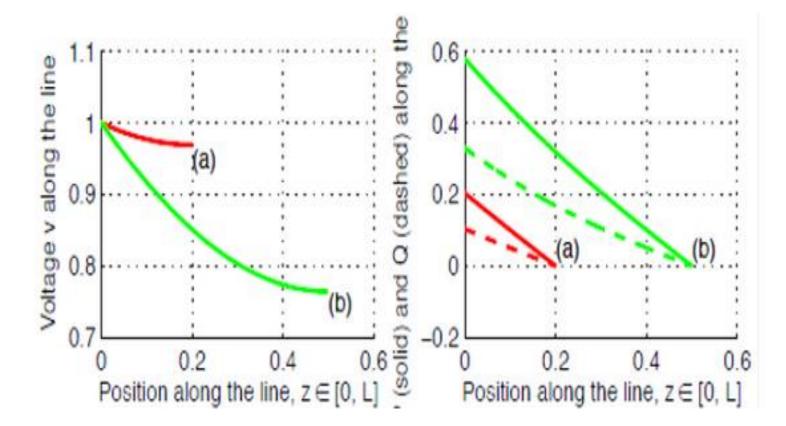
$$\frac{d}{dz} \begin{pmatrix} P \\ Q \\ v \end{pmatrix} = \begin{pmatrix} p - r \frac{P^2 - Q^2}{v^2} \\ q - x \frac{P^2 - Q^2}{v^2} \\ - \frac{rP + xQ}{v} \end{pmatrix}$$

boundary conditions $V_0 = 1, P(L) = Q(L) = 0$

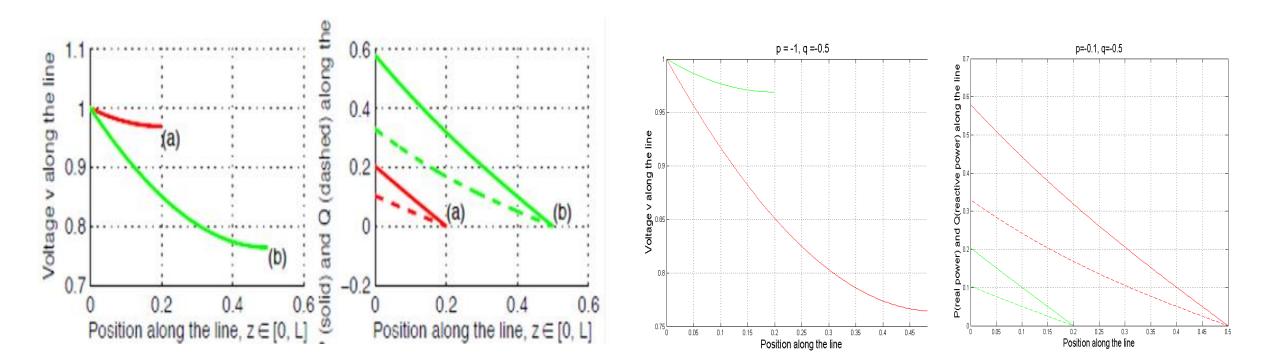
- By Solving the ODEs for known length of feeder line, one can evaluate real power, reactive power, and voltage along the line.
- Power vs Position
- Voltage vs Position

PREVIOUS WORK

- Set r = x = 1, $q = \frac{p}{2}$
- p=-1, q=-0.5
- p and q are negative along the feeder -- consuming



PREVIOUS RESULTS vs. OUR RESULTS



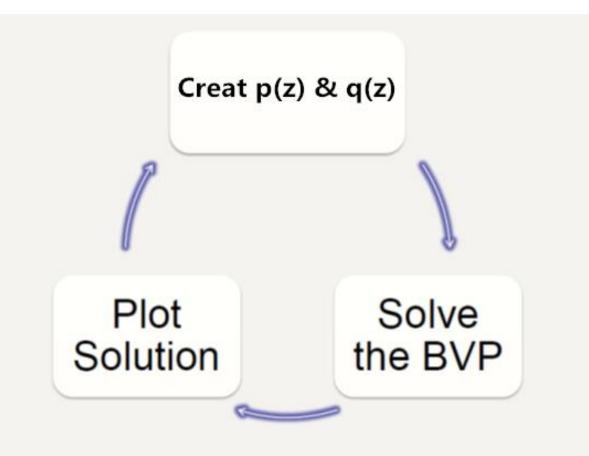
ADDING STOCHASTICITY

ADDING STOCHASTICITY

- A stochastic process, or a random process, is a collection of random values. This is often used to represent the evolution of some random variable, or system, over time
- Independent and identically distributed method was used
 - Independent and identically distributed of each random variable has the same probability distribution as the others and all are mutually independent

METHODOLOGY

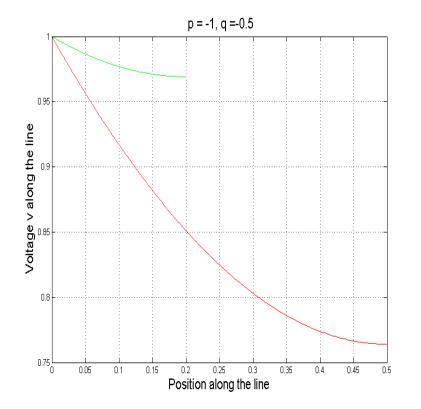
 $p(z) = -1 + 0.3 \times n$ $q(z) = -0.5 + 0.15 \times n$



VOLTAGE ALONG THE FEEDER LINE

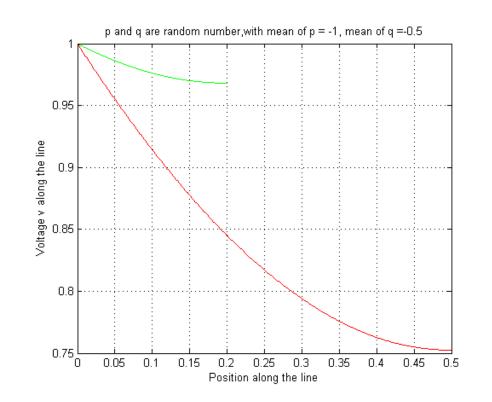
Set r = x = 1

• Real power, p, and reactive power, q, are constant



Set r = x = 1

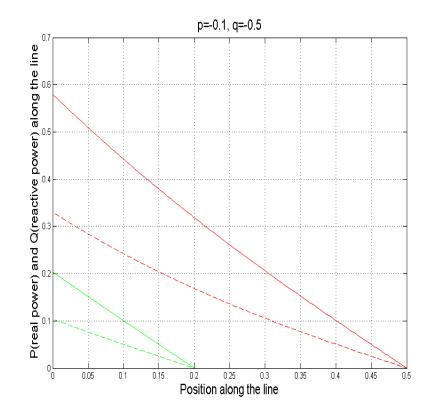
• Real power, p, and reactive power, q, are random numbers



POWER ALONG THE FEEDER LINE

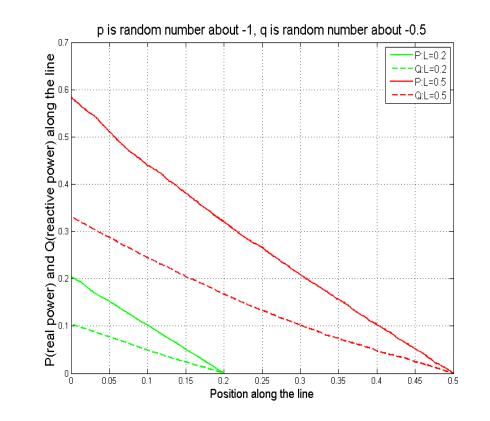
Set r = x = 1

• Real power, p, and reactive power, q, are constant



Set
$$r = x = 1$$

• Real power, p, and reactive power, q, are random numbers



WIENER PROCESS vs. I.I.D. PROCCESS

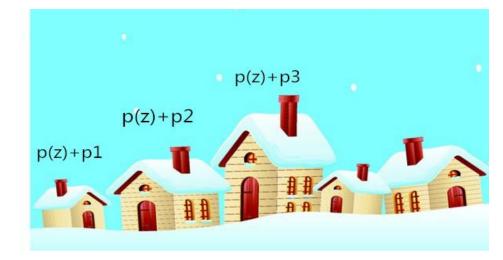
- Let $p(I) = p_0 + W(I)$, where W(I) is a Wiener Process.
- Substitute for p in DistFlow ODEs
- q=p/2, no independent noise
- Solve for boundary value problem

• Let
$$p(z) = -1 + 0.3 * n$$

• Let
$$q(z) = -0.5 + 0.15 * n$$
,

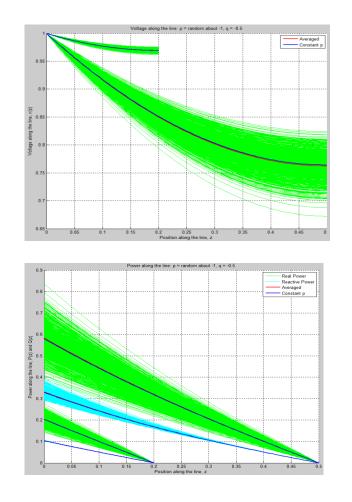
where n ~Normal (0,1)

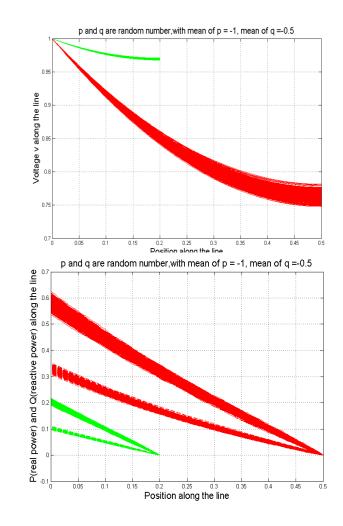
• Substitute for p and q in DistFlow ODEs



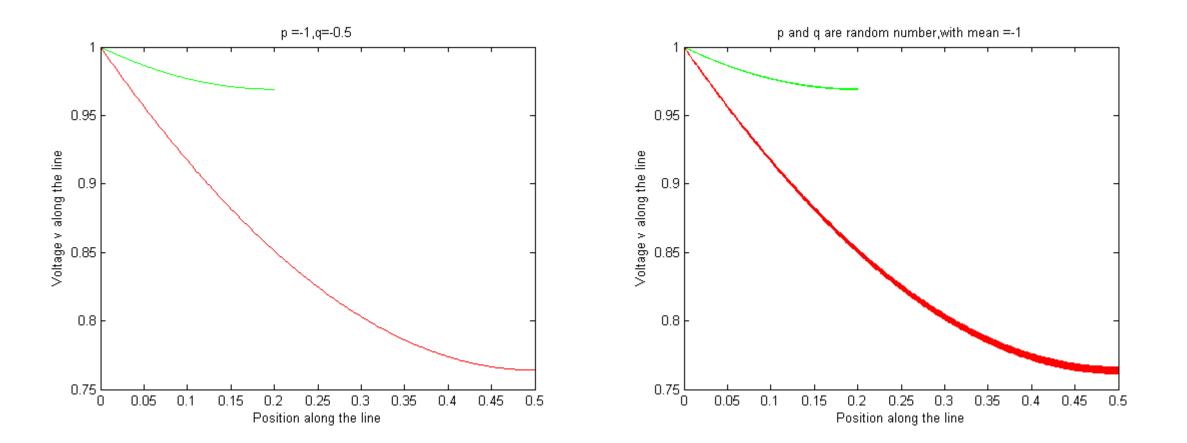
RESULTS

PREVIOUS RESULTS vs. OUR RESULTS

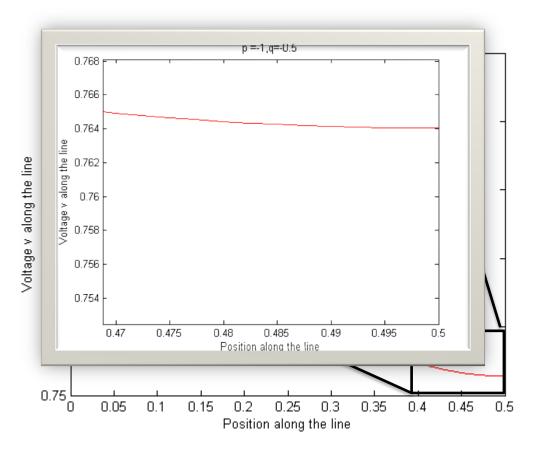


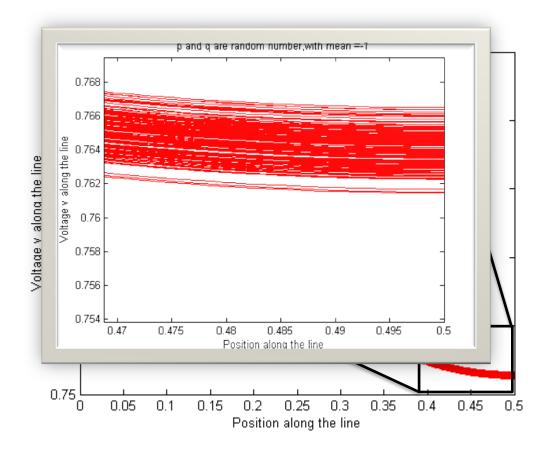


INTRODUCING NOISE INTO THE SYSTEM

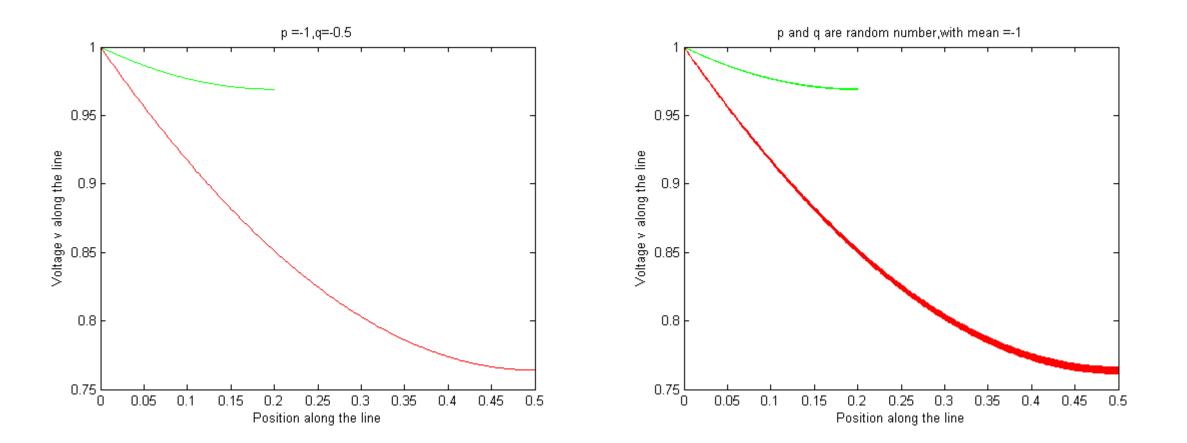


INTRODUCING NOISE INTO THE SYSTEM

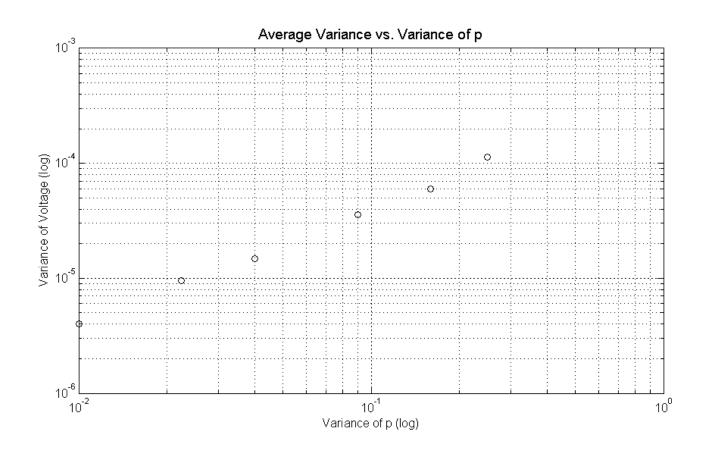




INTRODUCING NOISE INTO THE SYSTEM

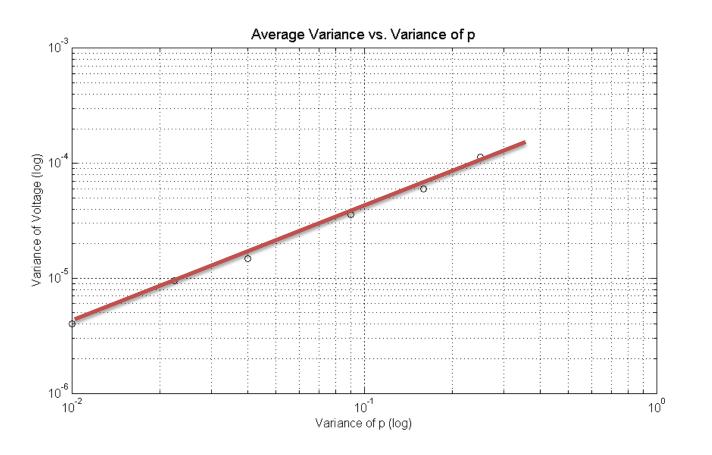


VARIANCE



 $p(I) = -1 + 0.3 \times random numbers$ $q(I) = -0.5 + 0.15 \times random numbers$

VARIANCE



• $y = a \cdot x + b$ • $y = \ln(S_v^2)$

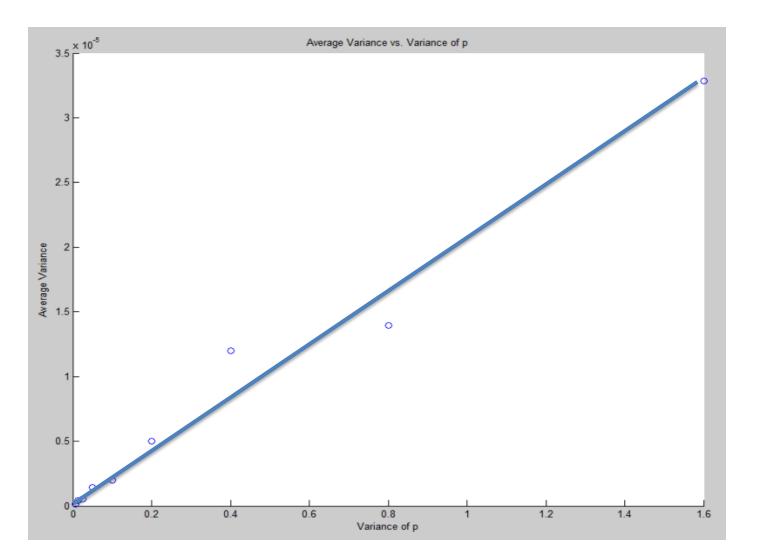
•
$$x = \ln(\sigma_p^2)$$

•
$$S_v^2 = C \cdot (\sigma_p^2)^a$$

• Value of
$$a(slope) = 1$$

•
$$S_v^2 \sim \sigma_p^2$$

COMPARSION



• Value of a(slope) = 2

•
$$S_v^2 \sim (\sigma_p^2)^2$$

DISCUSSION

DISCUSSION

- Small perturbations of power consumption have relatively little effect on voltage along the feeder line
- Assuming a constant power consumption is statistically valid
- The longer the feeder line is, the more it will be effected by the factors of line resistance, reactance, and fluctuations in power consumption
- The relation between the variance of p and the variance of voltage value is dependent on the model we use and the type of stochastic process that introduced into the system

References

- 1. D Wang, K Turitsyn and M Chertkov, "DistFlow ODE: Modeling, Analyzing and Controlling Long Distribution Feeder", Proceedings of, the 51st IEEE Conference on Decision and Control (2012)
- 2. Kaplan, S. M. (2009). "Smart Grid Electrical Power Transmission: Background and Policy Issues". The Capital.Net, Government Series.Pp. 1-42

Thank You.

Questions?