Spontaneous Synchronization in Power Grids

Oren Lee, Thomas Taylor, Tianye Chi, Austin Gubler, Maha Alsairafi

Motivation

- Complex Power Grids
- Optimization
- Reliability

What is a Network?

- Generators
 - Nodes
- Transmission lines
 - Matrix
- What is synchronization

$$Q_1 = Q_2 = ... = Q_n$$

Building the Grid

Newton's Second Law

$$Ia = t$$

Conservation of angular momentum

$$I\frac{d^2Q_i}{dt^2} = t_{mi} - t_{ei}$$

Conservation of Energy

$$\frac{2H_i}{W_R} \frac{d^2 d_i}{dt^2} = P_{mi} - P_{ei} \qquad H_i = \frac{1}{2} I W^2$$

Network Structure

Assumptions?

Physical network vs Effective network

Admittance

$$Y = \frac{\bar{P}}{|V|^2}$$

 $\mathbf{Y}_0 = (Y_{0ij}) : Y_{0ij}$ is the negative of the admittance between i and $j \neq i$

Stability condition from the swing equation

Assume

$$Q'_{i} = Q'_{i}^{*} + Q'_{i}; P_{ei} = P_{ei}^{*} + P_{ei}^{'}; P_{mi} = P_{mi}^{*} + P_{mi}^{'}$$

$$\frac{2H_{i}}{W_{R}}\frac{d^{2}d_{i}^{\prime}}{dt^{2}} = \frac{\P P_{mi}}{\P W_{i}}W_{i}^{\prime} - \frac{\P P_{ei}}{\P W_{i}}W_{i}^{\prime} - \overset{n}{\overset{n}{\bigcirc}}\frac{\P P_{ei}}{\P d_{j}}d_{j}^{\prime}$$

Term 1:
$$\P P_{mi} / \P W_i = -1/(W_R R_i)$$

Term 2:
$$\P P_{mi} / \P W_i = D_i / W_R$$

Term 3:
$$P_{ei} = D_i W_i / W_R + \sum_{j=1}^n E_i E_j (B_{ij} \cos Q_{ij}^* - G_{ij} \sin Q_{ij}^*) Q_{ij}^j$$

Coupled 2nd Order Equations

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \rightarrow d \\ \rightarrow d \end{bmatrix}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \rightarrow W \\ \rightarrow W \end{bmatrix}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \rightarrow W \\ \rightarrow W \end{bmatrix}$$

$$\dot{X}_1 = X_2$$

$$X_2 = -PX_1 - BX_2$$

Coupled 2nd Order Equations

$$B = \frac{1}{2H_i} + \frac{D_i}{2H_i}$$

B is the diagonal matrix of elementsβ

$$P_{ij} = \begin{cases} \frac{\omega_R E_i E_j}{2H_i} (G_{ij} \sin \delta_{ij}^* - B_{ij} \sin \delta_{ij}^*), & i \neq j \\ -\sum_{k \neq i} P_{ik}, & i = j \end{cases}$$

Simplifying coupled equations

From the different equation, this has the solution

$$(X_1)e^{/_1t} + (X_2)e^{/_2t}$$

How we guarantee stabilities?

By ensuring the REAL part is negative in both terms

Finding Stability from Matrix

- From ODE's, we can find requirements for stability.
- Lyopanov Exponents

$$I_{j\pm} = -\frac{b}{2} \pm \frac{1}{2} \sqrt{b^2 - 4a_j}$$

Keeping \(\) Negative

- Need to keep all Re(λ) < 0
- Alter function to $\Lambda=\max (Re (\lambda)) \le 0$, $j\ge 2$
- J=1 is a null eigenvalue
 - Related to shift in all phases
- How can we tune variable α to keep λ negative?

Function Behavior

- For α <0
 - ∧>0, not usable
- For $\alpha > 0$
 - Λ <0, usable and decreases for increasing α
- For $0 \le \alpha \le \beta^2/4$
 - Λ reaches minimum at $\alpha = \beta^2/4$
 - Imaginary part is added past this value

What value for α ?

- α is based on eigenvalues of the matrix P
- It is dependent on properties of the generator in the system
- We want the smallest non- zero value of α
 - This will increase stability
 - Choose α₂
 - α_1 is null, we ignore this value

Parameters for changes in demand

$$b = b_{opt} \circ 2\sqrt{a_2}$$

Droop Parameter (Off-line optimization)

$$R_i = \frac{1}{4H_i\sqrt{\partial_2} - D_i} \qquad i = 1, \dots, n$$

Damping Coefficient (Online optimization):

$$D_i = 4H_i\sqrt{a_2} - \frac{1}{R_i},$$
 $i = 1,...,n$

Testing Methods

- MATLAB script written from a simplified coupled equations.
- Assumed β equal for all nodes
- Arbitrary values for α
- 5 node system
- Solved using ODE45 function
- Integrated δ solution for varying β
- Repeated multiple times

Test Results

Test Results

Optimal Beta

Test Results

Conclusions

- Optimal Beta differs slightly from the expected value from the literature
- Can be explained by the randomness added to alpha values
- Within 10% range

Questions?