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Experiment

Error Analysis 



Background

Inverted Vibrating Pendulum Application 



Recap--Vertical Angle 
• Equation of Motion: 

U = 𝑚𝑔(𝑙 cos 𝜃 + 𝑑0 sin(𝜔𝑡))

• Lagrangian:

𝐿 = 𝐾 − 𝑈

𝐿 =
1

2
𝑙  𝜃2 + 𝑑0𝜔  𝜃𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 𝜔𝑡 − 𝑔𝑐𝑜𝑠𝜃 +
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2𝑙
𝜔2

𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝜃
−

𝜕𝐿

𝜕𝜃
= 0 (Euler-Lagrange Equation)

Ӫ +
𝑑0𝜔

2

𝑙
𝑐𝑜𝑠 𝜔𝑡 −

𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0

• Separate into “fast” and “slow” motion 

𝜃 𝑡 = 𝑋 𝑡 + 𝜉(𝑡)

𝐾 =
1

2
𝑚(  𝜃2𝑙2 + 𝑑0

2𝜔2 sin2(𝜔𝑡) − 2  𝜃𝑙 (sin 𝜃)𝑑0𝜔 sin(𝜔𝑡) )



Recap—Vertical Angle

• Averaging

𝜉 = −
𝑑0𝜔

2

𝑙
sin 𝑋  cos 𝜔𝑡 𝑑𝑡2 =

𝑑0

𝑙
sin 𝑋 cos 𝜔𝑡

 𝑥 = −
𝑑

𝑑𝜃
−

𝑔

𝑙
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𝑑0
2𝜔2

𝑙2
sin2 𝜃

• Effective Potential 

𝑈𝑒𝑓𝑓 = −
𝑔

𝑙
cos 𝜃 +

1

4

𝑑0
2𝜔2

𝑙2
sin2 𝜃

• Stability Analysis 
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Variables 

• 𝑑0 = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠

• 𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠

• 𝑙 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚

• 𝜃 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚

• 𝜙 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒

• 𝑔 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 9.81 𝑚/𝑠2

• 𝐾 = 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦

• 𝑈 = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝜙𝜃

𝑑0cos(𝜔𝑡)

𝑙



Arbitrary Angle of Base

X & Y Coordinates:

• 𝑥 = 𝑙𝑠𝑖𝑛 𝜃 + 𝑑0 cos 𝜔𝑡 cos𝜙

• 𝑦 = 𝑙 − 𝑙𝑐𝑜𝑠 𝜃 + 𝑑0 cos 𝜔𝑡 𝑠𝑖𝑛𝜙

Velocities:

• 𝑣𝑥 = 𝑙  𝜃 cos 𝜃 − 𝑑0𝜔 sin 𝜔𝑡 cos𝜙

• 𝑣𝑦 = 𝑙  𝜃sin(𝜃) −𝑑0𝜔 sin 𝜔𝑡 𝑠𝑖𝑛𝜙

𝜙 𝜃

𝑑0cos(𝜔𝑡)

𝑙



Lagrangian for Arbitrary Angle

• Lagrangian for any physical system is defined as Kinetic Energy minus 

Potential Energy

𝐿 = 𝐾 − 𝑈

• Kinetic Energy:

𝐾 =
1

2
𝑚𝑣2 =

1

2
𝑚(𝑣𝑥

2 + 𝑣𝑦
2)

𝐾 =
1

2
𝑚𝑙2  𝜃2 −𝑚𝑑0𝜔𝑙  𝜃cos 𝜃 − 𝜙 sin(𝜔𝑡)

• Potential Energy:

𝑈 = 𝑚𝑔ℎ

𝑈 = 𝑚𝑔𝑙 − 𝑚𝑔𝑙 cos 𝜃 + 𝑔𝑑0 cos 𝜔𝑡 sin𝜙

• Lagrangian:

• 𝐿 =
1

2
𝑚𝑙2  𝜃2 −𝑚𝑑0𝜔𝑙  𝜃cos 𝜃 − 𝜙 sin 𝜔𝑡 + 𝑚𝑔𝑙 cos 𝜃 − 𝑔𝑑0 cos 𝜔𝑡 sin𝜙

• 𝐿 =
1

2
𝑙  𝜃2 + 𝑑0𝜔

2sin 𝜃 − 𝜙 cos 𝜔𝑡 + 𝑔 cos 𝜃



Effective Potential Derivation 

• Use Euler-Lagrange Equation to write Equation of Motion

𝜕𝐿

𝜕𝜃
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕  𝜃
= 0

• Separate variables into rapid oscillations due to vibrating base and slow 

motion of pendulum 

𝜃 = 𝑋 + 𝜉

• Final differential equation can be written as a total derivative in position, 

which corresponds to the effective potential energy of the system

 𝑋 = −
𝜕

𝜕𝑋
−

𝑔

𝑙
cos 𝜃 −

𝑑𝑜
2𝜔2

4𝑙2
sin2(𝜃 − 𝜙)

• General equation of motion relates position and potential energy

 𝑥 = −
𝜕𝑈(𝑥)

𝜕𝑥



Effective Potential

• Comparing equation of motion to general 

form suggests concept of “effective 

potential”

𝑈𝑒𝑓𝑓 = −
𝑔

𝑙
cos 𝜃 −

𝑑𝑜
2𝜔2

4𝑙2
sin2(𝜃 − 𝜙)

• Separation of variables treats motion of 

the pendulum as one smooth motion with 

periodic perturbations

• Averaging technique smooths out rapid 

oscillations by averaging over the period 

of the rapid motion, like a strobe light, 

creating an idealized model

• “Effective potential” is the hypothetical 

potential energy of the idealized model

Effective potential of a pendulum 

with base angle of 45°, 

Stable equilibria



Stability Analysis 

• Stability occurs at local minima of potential energy, 
including effective potential

• Stability positions appear for frequencies above a 
minimum frequency

𝜔 >
2𝑔𝑙

𝑑0

• For Horizontal this occurs at an angle:

𝜃𝑠 = cos−1
2𝑔𝑙

𝑑0
2𝜔2

• For an arbitrary angle of the base of 45°, theoretical stable 
angle is129°, or 39° above the horizontal

𝜔 = 275.62
𝑟𝑎𝑑

𝑠𝑒𝑐
𝑙 = 0.187 𝑚 𝑑0 = 0.02 𝑚



Stability Analysis 

𝜔 = 275.62
𝑟𝑎𝑑

𝑠𝑒𝑐
𝑙 = 0.187 𝑚 𝑑0 = 0.02 𝑚 𝜙 = 45°

Stable equilibria



Physical Pendulum

• Theoretical model used “simple 

pendulum” where all mass is 

concentrated at single point at end of rod

• “Physical pendulum” is realistic model

• Must incorporate center of mass and 

moment of inertia into calculations

𝑈𝑒𝑓𝑓 = −
6

7

𝑔

𝑙
cos 𝜃 −

36

49

𝑑𝑜
2𝜔2

4𝑙2
sin2(𝜃 − 𝜙)

• Shifts stability points to more realistic 

locations

Simple pendulum model

Physical pendulum model



Experimental 

• Overview

• Use Cannon High Speed Camera to 

observe the pendulum’s motion

• On screen measurement 

Raw Data Table Measurement

Length of Pendulum  (m) .187

Diameter of Pendulum (m) 0.009525

Amplitude  (m) 0.020

Minimum 0.010

Maximum 0.030

Frequency (rad/s) 275.62

Angle of Base 51°

Moment of Inertia



Experimental 

• Results  

𝜔 = 275.62
𝑟𝑎𝑑

𝑠𝑒𝑐
𝑙 = 0.187 𝑚 𝑑0 = 0.020 𝑚 𝜙 = 51°



Error Analysis 

Measured Value Absolute Error Percent Error

Length of Pendulum (𝑙) 𝑙 = 0.187 meters δ𝑙 =  0.001 meters .54%

Amplitude of Base (d˳) d˳ = 0.020 meters δd˳ =  0.001 meters 5.0%

Period for 60 Oscillations (T*) T* = 1.35 seconds δT* =  0.05 seconds 3.7%

Error in Measurements
When taking measurements, there will be some error that depends on the 

accuracy of the instrument. This absolute error is called the “Least Count”. 

Relevant Measurements:

Note that Angular Frequency (ω) cannot be directly measured. Instead, the 

variable T* is introduced and defined as the period of time required for the 

pendulum’s base to make 60 oscillations. 

𝜔 = 2𝜋
60

𝑇∗
=
120𝜋

𝑇∗



Error Analysis 

Error Propagation
For a function f(x,y) with absolute errors δx and δy, there is sure to be some 

propagation of absolute error δf. This error is given by the Variance Formula:

δ𝑓 𝑥, 𝑦, 𝑧 =
𝜕𝑓

𝜕𝑥
𝛿𝑥

2

+
𝜕𝑓

𝜕𝑦
𝛿𝑦

2

+
𝜕𝑓

𝜕𝑧
𝛿𝑧

2

Relevant Equations For Pendulum

Critical Angles for Vertical Pendulum

𝜃𝑐(𝑙, 𝑑0, 𝜔) = ±cos−1 −
𝑔𝑙𝑇∗2

7200𝜋2𝑑0
2 = ±97°

Stability Angle for Horizontal Pendulum

𝜃𝑐(𝑙, 𝑑0, 𝜔) = cos−1
𝑔𝑙𝑇∗2

7200𝜋2𝑑0
2 = 83°



Error Analysis 

Error for Theoretical Critical Angles
The Variance Formula for θ(𝑙, 𝑑0, 𝜔):

δθ 𝑙, 𝑑0, 𝜔 =
𝜕𝑓

𝜕𝑙
𝛿𝑙

2

+
𝜕𝑓

𝜕𝑑0
𝛿𝑑0

2

+
𝜕𝑓

𝜕𝜔
𝛿𝜔

2

By letting α = −
𝑔

7200𝜋2
= −1.38 𝑥 10−4 the following partial differential equations 

can be obtained:

𝜕𝜃

𝜕𝑙
= −

𝛼𝑇∗2

𝑑0
2 1−

𝛼𝑙𝑇∗2

𝑑0
2

2

𝜕𝜃

𝜕𝑇∗
= −

2𝛼𝑙𝑇∗

𝑑0
2 1−

𝛼𝑙𝑇∗2

𝑑0
2

2

𝜕𝜃

𝜕𝑑0
=

2𝛼𝑙𝑇∗2

𝑑0
3 1−

𝛼𝑙𝑇∗2

𝑑0
2

2

**Notice that since each of these quantities will be squared, the sign doesn’t 

matter. This is why the error analysis will be the same for the stability angle for 

the Horizontal Pendulum.

𝜃𝑐(𝑙, 𝑑0, 𝜔) = ± cos−1 α
𝑙𝑇∗2

𝑑0
2 = ±97°



Error Analysis 

δθ 𝑙, 𝑑0, 𝜔 =
𝜕𝑓

𝜕𝑙
𝛿𝑙

2

+
𝜕𝑓

𝜕𝑑0
𝛿𝑑0

2

+
𝜕𝑓

𝜕𝜔
𝛿𝜔

2

If we plug in our measured values, we obtain:

δθ 𝑙, 𝑑0, 𝜔 = 0.633 ∗ 0.001 2 + 0.176 ∗ 0.05 2 + 11.84 ∗ .001 2

δθ = .0148 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 = .86°

Percent Error = 
δθ

𝜃
𝑥 100

This means:

Critical Angles for the Vertical Pendulum: θc = ± 97 ± 0.86° = ± 97 ± 0.89%

Stability Angle for the Horizontal Pendulum: θs = 83 ± 0.86 ° = 83 ± 1.04%



Thank You

Questions? 


