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ABSTRACT 
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approximately 3 seconds of motion. 

MATH MODELING FINAL REPORT 
MATH 485; Dr. Ildar Gabitov; Mentor: Joe Gibney 

 



1 An Introduction to the System Considered 
 

 

The classic “swinging spring” is the problem that the team set out to investigate, and the topic is addressed in 

detail in the midterm report. The system is simply a mass at the end of a spring swinging freely from a pivot; 

the question is what does its motion behave like in different regimes? Among the details addressed are the 

vast limitations that the assumptions that must be made present on the process of creating a physical model, 

especially for regimes of large amplitudes. The primary concern with considering the “swinging spring” system 

is the entirely necessary assumption that the spring does not bend, which is acceptable when small amplitudes 

are considered because the spring never enters compression. However when large amplitudes are considered 

this assumption is impossible to accept; because all springs bend when they are put into compression without 

constraint. Furthermore any constraints that could be imposed on a physical system would inherently create 

more friction. This cannot be accounted for mathematically in large amplitudes and would have some effect 

on the assumption that the spring is massless and does not interact with the bob for all purposes other than 

to create a reaction force from extension and compression. 

The adapted system that the team set out to model is one with fewer assumptions. The system considered is 

a bungee jumper. The bungee jumper is small in length compared to the length of a bungee cable. Since the 

cable is attached near the bungee jumper’s center of mass, the bungee jumper is effectively a point mass. Also, 

the bungee jumper is greater in mass than the bungee cable, and in the case of the physical model that was 

constructed this is certainly true (this will be discussed in section 5). For this reason we test the validity of 

assuming that the bungee cord is massless. Also with this same reasoning we will assume that the bungee cord 

does not interact with the bob in any manner other than to create a reaction force under extension; of course 

a bungee cord has no reaction when it is not extended from its relaxed length. One more assumption that was 

made for the numerical model is that there is no loss of energy in the system, and the reason for assuming this 

becomes obvious when we derive the equations of motion in section 2. Assuming that there is no friction is of 

course the largest downfall of the numerical model yet there hope is that the behaviors are similar for an 

observable period of time. 

 

2 Derivation of the Equations of Motion 
 

 

Creating a numerical model requires equations of motion that are customized to our experiment. From 

research made available to us we have seen the derivation of a system of three ordinary differential equations 

from the Lagrangian equation. This derivation assumes a linear relationship between the extension of the 

spring and the reaction force. This derivation was summarized and justified in the midterm report and has the 

form 𝐿 =
𝑚

2
(𝑥̇2 + 𝑦̇2̇ + 𝑧̇2) −

𝑘

2
(𝑟 − 𝑙0)

2 −𝑚𝑔𝑧  where 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, m is the mass of the bob, g is the 



gravitational acceleration constant, and 𝑙0 is the characteristic relaxed length of the spring. The first term in 

the equation is the kinetic energy of the mass, and the last term in the gravitational potential energy of the 

mass. These terms are consistent with the system that we are considering; the term that must be adapted is 

the second term: the elastic potential energy. 

Since large amplitudes are considered, the possibility that the bungee cord extends beyond the range that it 

behaves linearly must be considered. From preliminary tests of some household resistance bands it was 

determined that a fit of the form 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑎(𝑟 − 𝑙0)
3 + 𝑏(𝑟 − 𝑙0)  would serve well. The procedure by which 

the tests were performed are discussed in section 4. The fit of that form was contrived based on the fact that 

the behavior of the spring was nonlinear and an odd fitting function was required for the end behavior and 

type of symmetry. 

Entering this fit in the Lagrangian starts with integration. The potential energy from extending the resistance 

band, here referred to as 𝑉𝑒𝑙𝑎𝑠𝑡𝑖𝑐;  is integrated over an indefinite displacement to get: 

𝑣𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝑎

4
(𝑟 − 𝑙0)

4 +
𝑏

2
(𝑟 − 𝑙0)

2 

Now the Lagrangian is: 

𝐿 =
𝑚

2
(𝑥̇2 + 𝑦̇2̇ + 𝑧̇2) −

𝑎

4
(𝑟 − 𝑙0)

4 −
𝑏

2
(𝑟 − 𝑙0)

2 −𝑚𝑔𝑧 

And differentiating with respect to time assuming 𝐿 is constant yields: 

0 = 𝑚(𝑥̇ ⋅ 𝑥̈ + 𝑦̇ ⋅ 𝑦̈ + 𝑧̇ ⋅ 𝑧̈) − 𝑎(𝑟 − 𝑙0)
3 ⋅
𝑥 ⋅ 𝑥̇ + 𝑦 ⋅ 𝑦̇ + 𝑧 ⋅ 𝑧̇

√𝑥2 + 𝑦2 + 𝑧2
+ 𝑏(𝑟 − 𝑙0) ⋅

𝑥 ⋅ 𝑥̇ + 𝑦 ⋅ 𝑦̇ + 𝑧 ⋅ 𝑧̇

√𝑥2 + 𝑦2 + 𝑧2
−𝑚𝑔 ⋅ 𝑧̇ 

Substituting 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, dividing through by 𝑚, and factoring terms of  𝑥̇, 𝑦̇, and 𝑧̇ yields: 

0 = ⋯ 

+𝑥̇ (𝑥̈ −
𝑎

𝑚
⋅
(𝑟 − 𝑙0)

3

𝑟
𝑥 −

𝑏

𝑚
⋅
𝑟 − 𝑙0
𝑟

𝑥) 

+𝑦̇ (𝑦̈ −
𝑎

𝑚
⋅
(𝑟 − 𝑙0)

3

𝑟
𝑦 −

𝑏

𝑚
⋅
𝑟 − 𝑙0
𝑟

𝑦) 

+𝑧̇ (𝑧̈ −
𝑎

𝑚
⋅
(𝑟 − 𝑙0)

3

𝑟
𝑧 −

𝑏

𝑚
⋅
𝑟 − 𝑙0
𝑟

𝑧 − 𝑔) 

So now we have a system of ordinary differential equations that describe Cartesian acceleration as a function 

of Cartesian coordinates with 5 parameters. The equations of motion are: 

{
 
 

 
 𝑥̈ = −(𝑎 ⋅ (𝑟 − 𝑙0)

3 + 𝑏 ⋅ (𝑟 − 𝑙0))
𝑥

𝑚 ⋅ 𝑟

𝑦̈ = −(𝑎 ⋅ (𝑟 − 𝑙0)
3 + 𝑏 ⋅ (𝑟 − 𝑙0))

𝑦

𝑚 ⋅ 𝑟

𝑧̈ = −(𝑎 ⋅ (𝑟 − 𝑙0)
3 + 𝑏 ⋅ (𝑟 − 𝑙0))

𝑧

𝑚 ⋅ 𝑟
− 𝑔

 



Though the system is not integrable and no analytic solutions exist, the dynamics can be studied numerically 

using powerful numerical integration tools available with MATLAB. The numerical methods applied to the 

system are discussed in section 3. 

 

3 Numeric Simulations Using MATLAB 
 

 

MATLAB has a variety of tools that can be used for numerical integration of different types of ODE’s. This 

system is also a very permitting case, so the creation of a numerical model was simple. Before discussing the 

function and results of the numerical model, we will define how we view the system in the numerical model: 

Parameter: Meaning: 

𝒎 Mass of the bob, measured in pound-mass 

𝒍𝟎 The maximum distance that the center of mass of the bob can be from the pivot before the 
reaction of the elastic starts acting on the bob. The units used are feet. 

𝑎, 𝑏 Coefficients of the elastic response curve of the form 𝐹 = 𝑎(𝑟 − 𝑙0)
3 + 𝑏(𝑟 − 𝑙0) 

𝑔 The gravitational acceleration constant taken here to be 32.2 𝑓𝑡/𝑠2 

 

For numerical integration, initial conditions must be selected. Since velocity is not present in the equations of 

motion, though the position is dependent on the velocity, one must specify initial velocities to analyze the 

motion of the system; and since the acceleration is dependent on the position per the equations of motion, we 

need only specify six numbers to begin the process of numerical integration: 

Datum: Meaning: 

𝑥0 The 𝑥 −projection of the initial position  

𝑥̇0 The 𝑥 −projection of the initial velocity 

𝑦0 The 𝑦 −projection of the initial position  

𝑦̇0 The 𝑦 −projection of the initial velocity 

𝑧0 The 𝑧 −projection of the initial position  

𝑧̇0 The 𝑧 −projection of the initial velocity 



 

For convenience, and since only motion in the 𝑥-𝑧 plane is 

discussed in this report: figures will refer to these initial 

conditions in a sort of vector notation of the form: 

𝑿𝟎 = (𝑥0, 𝑥0̇, 𝑧0, 𝑧0̇) 

The coordinate system is defined such that the origin is 

coincident with the pivot and with the positive 𝑧 - axis 

pointing upward. Figure 1 shows an arbitrary set of initial 

conditions to point out a few features of the simulation. In 

the figure the vertical arrow shows the relaxed, 

characteristic length “𝑙0” which is not to be mistaken with 

the equilibrium length of the system with a mass attached 

even though the vertical orientation may be misleading in 

that sense. The other arrow represents the elastic band. It 

roughly points to the end of the trajectory that represents 

the position at the time the simulation stops, and while the 

program is running the vector shows the length of the elastic band at the time compared to its characteristic 

length. Starting from (−1,0,−1,0) notice that the motion is entirely vertical until the trajectory turns blue 

when the path is influenced by the elastic band. As you can see this is also when the distance from the pivot 

becomes greater than the vector representation of 𝑙0. In section 4 we will discuss the experimental design to 

test the features of this program. 

 

4 Experimental Design 
 

 

The first phase in the experiment design was deciding what type of system could be employed. Obviously 

dealing with the magnitudes of an actual bungee jump would be difficult; also the typical, vertical dynamics of 

a bungee jumper are trivial for this model. Our first idea (discussed in the midterm report) was to connect 

springs in series, particularly for the reason that we believed springs would behave more linearly than bungee 

cables. However in systems that the team tested initially –particularly those with a larger ratio of the 

approximated spring constant to the bob mass: 
𝑘

𝑚
, the jostling of the individual springs caused too much 

divergence from the predicted path and the motion was too “busy” to compare to the model. Moreover in 

smaller ratios it was obvious that the fit for reaction force related to extension was not exactly linear as 

anticipated. For these reasons the next (and also more obvious) experimental design was conceived.  

Figure 1; an arbitrary simulation starting from (-1,0,-1,0); cyan 
represents free fall and blue represents trajectories with an 
elastic response. 50 dots per second. 



Household resistance bands (figure 2) were tested for 

their elastic response function. This relationship was 

decidedly nonlinear, though this is the cost of taking on 

the consideration of large amplitudes. Then the type of 

mechanisms this might be uses for connecting bobs 

were considered. An effective solution to this was 

tightly wound string and hand wraps. Also it was noted 

that the spring function should be tested within the range of the possible extension of these prospective bobs, 

starting from a maximum initial 𝑧-coordinate of 0, and with 𝑟 − 𝑙0 not exceeding 1 foot. 

The outlined procedure for collecting the data was simple but done carefully: 

1. The characteristic length of the resistance band was measured. This is 𝑙0. 

2. The spring is hung vertically and allowed to come to equilibrium with a small mass attached. 

3. The displacement from the characteristic length is measured and recorded. 

4. This is repeated with increasing mass six times within the aforementioned range. 

Once the data is collected; the 

experimental dependent variable is 

switched to be considered the 

independent variable so force (the weight 

of the mass attached) as a function of 

extension (the equilibrium position less 𝑙0) 

is graphed. The fitting process was nearly 

ideal because it fit perfectly to a quadratic 

function in every case. We say this is 

nearly ideal because the function was 

limited by the need to avoid over fitting 

the data. With an odd polynomial of the 

form mentioned in section 2 an 𝑅2 value 

of 0.999 in some cases was seen, which is 

a sign that a cubic fit may have been over-fitting the data. On the other hand a quadratic polynomial fit the 

data nearly perfectly as well in every case, so it was decided to use the lower degree polynomial to run our 

simulations for three reasons: 

1. There is no need for any type of symmetry about the point of zero extension since the model of an 

elastic band excludes a compression force. 

2. The data that we fit more than spanned the range for extension considered in our experiment, so no 

concerns involving the concavity or end behavior of our polynomial fitting function must be 

considered. 

3. In some cases, the numerical simulations involving cubic terms caused errors. 

Therefore when experiments were recorded, MATLAB figures were created using the best polynomial fit of the 

lowest degree, which was in every case a quadratic fit. The system for a spring function of quadratic form is: 

Figure 2; a generic photograph of a 
similar resistance band to those used 
in our experiment. 
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{
 
 

 
 𝑥̈ = −(𝑎 ⋅ (𝑟 − 𝑙0)

2 + 𝑏 ⋅ (𝑟 − 𝑙0))
𝑥

𝑚 ⋅ 𝑟

𝑦̈ = −(𝑎 ⋅ (𝑟 − 𝑙0)
2 + 𝑏 ⋅ (𝑟 − 𝑙0))

𝑦

𝑚 ⋅ 𝑟

𝑧̈ = −(𝑎 ⋅ (𝑟 − 𝑙0)
2 + 𝑏 ⋅ (𝑟 − 𝑙0))

𝑧

𝑚 ⋅ 𝑟
− 𝑔

 

 

5 The Physical Model 
 

 

A physical model was realized 

first by developing a support for 

the pivot of the pendulum 

considered in 2-dimensions. The 

support was created with enough 

clearance to allow the bob to 

swing from the resistance bands 

in the amplitudes that were to be 

considered without hitting the 

ground. Supplies were collected 

after a CAD model of the pivot 

support system was created. The 

support was created to restrict 

rocking of the pivot in the 𝑥 -

direction and such that the pivot was not able to bounce along 

the 𝑧-axis. The CAD drawing of the pendulum pivot support is shown in figure 3. The cross girder and cross-

brace supports were fixed to the vertical support at a 45° angle and forced into the ground with boulders to 

achieve maximum frictional stabilization. The rod that used as pivot was driven through the main body tightly 

into ¼ inch pilot holes. 

The articulation of the resistance band with the pivot was minimal as the 

rod we used as a pivot was grease-coated steel and the end of the 

resistance band was a metal hook that fit snugly, but not tightly, around the 

rod. A stock image of the exact resistance band set that was used for this 

experiment is shown in figure 4. 

Figure 3; a CAD drawing showing the dimensions of the 
support system for the pendulum pivot. 

Figure 4; the resistance band set that was 
used for the physical model. 



A high speed camera was provided by the course 

instructor, Dr. Ildar Gabitov and the University of 

Arizona Department of Mathematics. Using video 

recorded at 120 frames per second, data was 

collected from an angle set normal to the 𝑥-𝑧 plane 

and centered approximately at the middle of the 

trajectories that were considered. Figures of the 

numerical simulations for the corresponding 

parameters and initial conditions were 

superimposed with square axes on top of overlaid 

frames of the video at ¼ second intervals. Figure 5 

shows the one such scenario with a 10-pound 

medicine ball. The simulation was not specially 

selected in any way; the initial conditions were 

chosen based on the simple means of consistency 

and repeatability –i.e. it is easy to hold a ball 

horizontally with no extension and drop it with no 

initial velocity. The parameters involving the length 

of the resistance band and the mass of the 

medicine ball were simply recorded as accurately 

as possible and the fitting of the spring function 

was done with all precision available; and the numerical simulation exceeded expectations on the first try. 

Figure 6 shows the same respective initial conditions with a different resistance band and a three-pound 

dumbbell instead of the medicine ball. It was possible to attach the resistance band to the dumbbell at its 

center of mass unlike the case with the medicine 

ball, and so the characteristic length of the 

resistance band is slightly shorter. 

An additional technique used to collect data on the 

experimental trajectories of the system was long 

exposure photography. A long exposure photograph 

is a still frame photograph where the shutter stays 

open long enough to collect an exposure in low-light 

situations. When intense light is thrown across the 

field of view during an exposure it leaves a streak of 

light showing the path of the light source. We 

employed this technique by attaching a bright LED 

head lamp to the bob at night time and repeated a 

couple of the experiments that we performed 

during the day time. The results were very 

illuminating. 

Figure 5; frames separated by 0.25 second intervals of 
a 10 pound ball swinging with corresponding numerical 
simulation superimposed. 𝑿𝟎 = (𝒍𝟎, 𝟎, 𝟎, 𝟎), where 
𝒍𝟎 = 𝟒.𝟑𝟓𝟒 feet, 𝒂 = −𝟎.𝟖𝟎𝟐𝟖 and 𝒃 = 𝟖. 𝟓𝟐𝟑𝟒 

Figure 6; frames separated by 0.25 second intervals of a 3 pound dumbbell 
swinging with corresponding numerical simulation superimposed. 𝑿𝟎 =
(𝒍𝟎, 𝟎, 𝟎, 𝟎), where 𝒍𝟎 = 𝟑. 𝟖𝟕𝟓 feet, 𝒂 = −𝟎. 𝟑𝟖𝟎𝟕 and 𝒃 = 𝟑. 𝟓𝟖𝟗 

 



Figure 7 shows the same experiment 

demonstrated in figure 5 in a different light. 

The exposure on the photograph is about 5 

seconds. Unfortunately the ball is rotating 

during the swinging motion so the head 

lamp becomes eclipsed sooner than we 

would have liked, but nevertheless it is 

pleasing to see that it shows the motion in 

agreement with the figure overlays and 

again with the numerical simulation. Since 

the ball is continuously rotating one might 

allow a margin of error in this overlay equal 

to the radius from the center of mass of the 

ball to the end of the head lamp. That radius 

is approximately 4 inches. 

 

 

 

 

6 Experimental Data Analysis 
 

 

One out of every thirty frames was taken from the high speed video and the position of the bob was 

recorded. This gave a course data representation (an approximate position every ¼ second) of the bob’s 

position versus time. Graphs of data collected from the experiment shown in the data appendix. Estimating 

the positions was an arduous process and the velocities were even tougher. For this reason this data was not 

used to calculate total energy of the system versus time. As a word of caution when interpreting the graphs: 

The decay of the amplitude in the 𝑥-𝑡 and 𝑧-𝑡 projections does not necessarily represent the loss of energy in 

the system because energy can translate to different axes. The illusion in the 𝑧-𝑡 graph that the amplitude is 

decreasing monotonically should be interpreted through this lens. 

The 𝑣𝑥 and 𝑣𝑧 tell a similar story, if carefully inspected together it might show that the amplitudes of velocity, 

√𝑣𝑥2 + 𝑣𝑧2, is decreasing though time though the analysis proves to be more complicated than this calculation 

as energy can be hidden in the extension of the resistance band as well as in the 𝑧-displacement.  

𝑣𝑧-𝑡 is a valuable representation of how the dynamics of an elastic band differs from the classic swinging 

spring problem. The elliptical shape shows the asymmetry of the reaction force from the elastic band when it 

is working with gravity versus against gravity. You can see that the curve is looser when the resistance band is 

not activated (on the right) versus when the resistance band is activated (on the left). One would expect this 

Figure 7; using a long exposure photograph the experiment outlined in figure 5 is 
shown with a continuous trajectory. 



curve to have a taste of symmetry when the elastic band forcing is symmetrical about its characteristic 

length. 

 

7 Conclusion & Discussion 
 

 

The experiments reported were not the only experiments performed. Many of the experiments performed 

were consistent with the numerical model and many served to improve the numerical model. With the large 

success of this simplified program that was created one question is raised: What is the model useful for? The 

most apparent use of the model is to demonstrate the trajectories of a bungee jumper or perhaps any other 

mass swinging from an elastic band. This is an invaluable preliminary step in ensuring the safety of 

experimentation. For many reasons we call this only a preliminary step –that is it should be taken with one’s 

better judgment and research. One of these reasons in that the assumptions made in this model limit its 

accuracy. Since the energy is held constant in this application someone might facilely assume that the program 

shows the maximum magnitude possible for a certain direction of extension, however due to the potentially 

chaotic behavior of the system the change in the trajectory could lead to extension in an unexpected direction. 

Another scenario where the model could differ in practice is when bungee jumpers are in free fall. The weight 

of the chord (around 0.4 pounds/foot) folded over itself can cause gravitational acceleration greater than 𝑔, or 

in almost every case the gravitational acceleration during free fall will be different from 𝑔 when the chord is 

not in close enough accordance with the assumptions in the model. Therefore an abundance of caution must 

be made when using a simplified model such as this one. For these reasons the use of the program might just 

be to get an idea of the qualitative trajectories that can be realized when trying to design a thrilling regime of 

a bungee jumping experience. This type of simulation could decrease the amount of money spent on 

prototyping and therefore improving the model for a more specific application could be a useful investment. 
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