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Abstract: 

 

A theoretical and real model of total power flowing up and down a power grid is created using 

different modeling tools. Original DistFlow ODEs are found by combining the equations for real 

and reactive power with fundamental Kirchoff’s laws. By converting DistFlow ODE’s with 

boundary conditions into an initial value problem with initial conditions shows the solution of 

voltage with respect to length, and it is able to test not just one length but all length at the single 

run of the rescaled equation. The graphs drawn by the DistFlow ODEs and rescaled equations, 

show the desirable and undesirable scenario with multiple stable solutions. The undesirable 

scenario will cause of power failure and other unexpected troubles. 
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1 Introduction and Background 

 

1.1 Introduction 

 

Total power, real and reactive, in an electrical grid is measured as the rate of flow of energy in an 

electrical grid. Where real power is a combination of current and voltage, both are sinusoidal. If 

the power load is entirely resistive, current and voltage will reverse polarity simultaneously.  

When the product of current and voltage is positive in the grid, only real power is transferred.  

Reactive power voltage and current will be 90° out of phase during each wave cycle. When this 

happens, the product of current and voltage will be negative. During this phase of the wave 

cycle, approximately as much power flows up the line as back down.  

 

A power grid or network is traditionally used to deliver electricity from a main producer, a 

power plant of some kind, to consumers.  This model focuses on households and is an 

interconnected grid consisting of generating stations, transmission lines, and distribution lines. In 

an ideal case where none of the consumers are also producers the generating stations are large 

and typically located next to a source of fuel and some distance away from densely populated 

areas. The transmission lines are used to transport real and reactive power to the subgenerators or 

substations. The distribution lines are then used to transport power to the consumers. In a non-

ideal case an amount, but typically not all, of the consumers will also produce power. This is 

typically done with the use of solar panels or wind turbines which causes power to flow back up 

the line at sporadic intervals which can cause power outages or shortages.  

 

A better understanding of the effect self-producers have on the electrical grid is needed as more 

consumers are also becoming producers.  A recreation of the model, results, and a model of the 

fluctuations of real and reactive power flowing randomly both up and down along an electrical 

grid for real world application will be created and discussed.  

 

1.2  Background 

 

Real power is positive and represents energy which is consumed.  Reactive power is negative 

energy which is returned to the power source and stored in capacitors and inductors. Total power 

is the combination of real and reactive power which is represented as a complex number. The 

equations below, when combined with Kirchoff’s fundamental laws, lead to developing the 

initial model.  

 

                                                                                                                                          (1) 

                                                                                                                                           (2) 

 

Where: 

 S is the apparent power 

 P is the real power  

Q is the reactive power 

 z is the impedance 

 r is the resistance 

 x is the inductance 
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2 Developing the Model 

 

2.1 DistFlow Equations (Discrete Form) 

 

The system of DistFlow equations for real power, reactive power, and voltage  are: 
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k = 0,...,N-1 enumerates buses of the feeder ( k=consumers) 

Pk is real power flowing from bus k to bus k + 1 

Qk is reactive power flowing from bus k to bus k + 1 

Pk and qk are net consumption for consumers 

Rk, xk represent the resistance and inductance of the line element connecting bus k to bus k+1  

with boundary condition  

                                         PN+1 = QN+1 = 0,   v0 = 1 

 

Means the initial voltage is known; the voltage with which the feeder is supplied. Real power 

and reactive power at the end of the feeder line is zero so all the power supplied in the beginning 

is being consumed; there is no leftover power in the line. 

 

2.2 Homogenization 

 

The discrete DistFlow equations will be converted into boundary value problem ODEs which 

would be more convenient to solve for large amounts of consumers (e.g., for a million 

consumers, three million equations would have to be solved if DistFlow equations were used. 

With DistFlow ODEs, three equations will be solved.). 

 

When the feeder line is long and the number of consumers assumed large (N>>1), the system of 

equations can be simplified and represented in the continuous form with limit N  . To solve 

for the standard homogenization, more assumptions and reduction of parameters are considered, 

and more simplifications have been done to relate the differences of definition of derivatives 

(Fk+1 - Fk ≈ F′(z)lk /L).  Applying the above equations to relative differences in the DistFlow 
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equations, a set of Ordinary Differential Equations (ODEs) are arrived at in the continuous 

homogenized form 
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with mixed boundary conditions 

V0 =1, P(L) =Q(L)=0 

This continuous homogenized ODE is a boundary value problem with mixed boundary 

conditions. By solving this ODE for known length of feeder line, real and reactive power and 

voltage along the given line can be evaluated. 

 

 

2.3 Rescaled & Simplified Form 

 

The original DistFlow ODEs can be rescaled and simplified into an initial value problem. The 

difference between boundary value problems and initial value problems is that boundary value 

problems have conditions given for integration on both sides of the feeder line, while initial 

value problems have only one condition given for one side of the feeder line. Therefore, solving 

initial value problems is easier than solving boundary value problems. 

 

Assuming that p = constant, then define new dimensionless variables ρ, τ, υ and s to represent P, 

Q, voltage, v, and position along the feeder, z, in term of s.  
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Dimensionless Form Proved as following: 
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There is no unit in ρ equation, thus this is a dimensionless variable.  The same method proved τ 

and υ are dimensionless variables.  

When rescaling and simplifying the boundary value problem into an initial value problem,  the 

rescaling method changes the position of the feeder line and the end of the feeder line.   Whether 

voltage at the end of feeder line is the same as voltage at the beginning of the feeder line can then 

be calculated.    

 

The following equation illustrates the rescaled DistFlow ODEs 
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With initial conditions 
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To determine whether the original DistFlow ODEs are related to the rescaled DistFlow ODEs, 

simply use the dimensionless variables in equation (7) in equation (8). .  

 

From the original DistFlow ODEs, equation (8) is proposed to be an initial value problem.  

Integrate from equation (8) to obtain    where     represent some stopping points.  The result is 

ρ(  ), τ(  ), υ(  ). Then re-compute L, P(0), Q(0) and v(L) using the following equations: 
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Overall, the computation appears to be efficient and reliable. Consider rescaling a non-

dimensional system each time when solving boundary value equations by selecting certain L 

(length of the feeder line) because the boundaries need to be specified in order to solve the 

equations.  The solution of these equation domains are given without length. On the other hand, 

when the problem is rescaled to create an initial value problem, as the initial value problem is 

integrated to test every single length along the feeder line which also means solving every 

possible boundary value problem up to that length. Thus, not only is the initial value problem 

easier to solve than a boundary value problem, but also testing not only one length, but all 

lengths at the single run of the equation is possible.  
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3 Theoretical Results 

 

Two cases are included in this section. The re-scaled equation and Ordinary Differential 

Equations (ODEs) are used to produce the graphs by Matlab. The solutions are used to calculate 

the end voltage and power utilization. All the cases are based on r=x=1, and q=p/2.   

 

Case 1 is a standard situation.  Real power and reactive power are both negative along the feeder 

line which means there is consistent consumption for each consumer.  Figure 1 shows the 

relation between the end voltage and the length of the line.  The parameters p and q are -1 and -

0.5 which implies constant power consumption. Figure 1 shows an interesting phenomenon –a 

maximum length around L=0.6.  The length of the line is limited because there is a limitation of 

power consumption along the feeder.   The amount of power drawn from the system cannot 

exceed the threshold dependent on the system characteristics.  

 

 
Figure 1: Voltage at the end of the line versus the length of the line, for p=-1 and q =-0.5 

 

Figure 2 shows the trade-off between the power utilization of the feeder.  The line decreases 

slowly at the beginning and the voltage drops at the end of the line.  Since the parameters and 

conditions of the system are the same as Figure 1, there is the same limitation of the length with 

the constant consumption.  Thus, the length to the maximum value is also around 0.6.  
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Figure 2: Power utilization versus length of the line, for p=-1, q=0.5 

 

Figures 3 and 4 show the relation between voltage and position along the line.  Figure 3 shows 

the shape of the voltage curve which is decreasing during the entire interval because when the 

power decreases along the line, the voltage will also decrease.  The feeder is longer so the rate of 

consumption is higher.  Figure 4 shows the real and reactive power along the line for lengths 

L=0.2 and L=0.5.   Figure 4 is also decreasing across the entire interval, and at the end of the 

line, real and reactive power equal 0.  Since the boundary value is P(L)=Q(L)=0, all power will 

be consumed and become 0 in the end. 

 

 
Figure 3: Voltage along the feeder L=0.2 and L=0.5, for p=-1 and q=-0.5 
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Figure 4: Power along the line, L=0.2 and L=0.5, for p=-1 and q=-0.5 

 

Figures 5 and 6 display a similar graph to Figures 1 and 2.  The graphs have the same value p; 

however, q has been changed from -0.5 to 0.  This means there is no more reactive power 

consumption along the feeder.  Thus in Figure 5, the nose-curve shifts to the right a little.   In 

Figure 6, the rate of consumption is smaller.   The maximum length is longer than the previous 

one, around L=0.7. 

 

  
Figure 5: Voltage at the end of the line versus the length of the line, for p=-1 and q=0 
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Figure 6: Voltage along the line, L=0.2 and L=0.5, for p=-1 and q=0 

 

Case 2 considers all consumers are producing power, so real power and reactive power were set 

to be positive and constant along the feeder. Figure 7 shows the relation between the end voltage 

and the length of the line.  The parameters p and q are 1 and 0.5.  The graph shows an interesting 

phenomenon that the line is increasing during the maximum length, but decreasing at the end.  

After the last producer, there is no more power being produced which means the last producer 

will also consume the power so the line decreases in the end.  Furthermore, the graph shows all 

buses will produce and consume power at the same time. 

 

 
Figure 7: Voltage at the end of the line versus the length of the line, for p=1 and q =0.5 

 

Figure 8 shows an interesting curve.  For the red line, the graph is the standard situation.  Since 

the buses are producing power, the voltage is increasing and power flow is negative.   The green 

line is not a typical linear line.  During the interval [0,0.5] and [1.6,2], the graph is increasing and 

power flow is negative.  However, between 0.5 and 1.6, the graph is decreasing and the power 

flow is positive.  Since ODEs have different solutions, the graph will be different.  The green line 

shows the power flow directions will reverse several times along the feeder during the day.  This 
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is an uncertain situation, and may cause some problems, such as power failure suddenly.  Thus, 

the graph shows a result with a hard to control and dangerous behavior. 

 

 
Figure 8: Voltage along the feeder with different length, for p=1 and q=0.5 

 

 

4 Reproduction of Previous Results 

 

 

 

5 Results 

5.1 Adding Stochasticity  

 

Throughout the previous results, the power consumption p was assumed to be a random 

number about -1, and q was constant -0.5 along the line.   The Wiener process was used in the 

boundary value conditioned ODE's.  However, this is not the case for  how people use electric in 

the real world since every customer does not use power based on the neighbors.  For the previous 

work, the power consumption rates between each house are independent, but the power 

consumption at House 2 depends on the power consumption at House 3 which does not make 

sense.  Thus in this paper, more practical method of adding stochastic in the boundary value 

conditioned ODE's will be used. 

 

Identically independently distributed noise (IID noise) was chosen because it will add noise 

to each parameter more practically than a power distribution system might experience.  First, the 

mean of p  was set as -1, and the mean of q  as -0.5.   The same mean was used as in previous 

work  as a convenience to compare two works.   Random values of noise were added to 

parameter p and q.  Functions of add IID noise are p= -1+ 0.3*random numbers and q=-

0.5+0.15*random numbers.  This choice for power consumption allows p and q in each  house as 

independent and will not affect each other. 

 

For the calculation, 200 steps were chosen in the process which means  the power line can be 

divided  into 200 steps of equal length, with a power consumption p0+noise and q0+noise at the 
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nth step along the line.  The p and q were substituted in the boundary value problem.  Matlab 

was used to get the graph of all the solutions. In each simulation, a distinct real and reactive 

power consumption profile was created, the boundary value problem was solved for the two 

lengths L=0.2 and L=0.5, and the solutions were plotted. 

 

 

 
 

 Figures below depict the aggregated results of 1000 simulations, as described above, along with 

the averaged solutions. 

Each green and red line represents an individual solution to the boundary value problem for 

distinct, randomly generated power consumption profiles where length equals 0.2 and 0.5.  As 

seen on the graph, 1000 lines gather tightly and each line is a little bit shaky.  Since noise was 

added to both p and q, the boundary value solutions are harder to solve; thus the lines are not   

fluent any more.  

 

 
Figure: The stochastic graph from previous work 

using Wiener process, random p around -1 and q=p/2. 

From the previous work (left graph), the range of voltage is wider  the current work on the right 

graph for several reasons.  First,  the previous work included a larger variance;  thus the three 

times of standard deviation is larger.  It is highly possible that p in the previous work  could be 

positive number.  But in  the current work,  the standard deviation  was set at 0.3  so it is less 

possible  positive numbers will appear in p.  Second, since  the Wiener process was used in the 

previous work, and the power consumption is based on a previous house, the following house 
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will be larger and larger if the previous house gets a positive p.  Although the power 

consumption rate is independently random, the whole power consumption will not decrease or 

increase rapidly.  So from the previous graph, some lines below or upper the whole area  which 

will not happen in the current project.   Noise was added to p and q, which are both 

independently random, so each house will not affect other houses along the line.  

 

5.2 Adding Variance  

 

 Studying the relation between the variance of the power consumption parameter and the 

variance of the results is helpful to compute a safety range in order to avoid the voltage shortage 

at the end of the feeder line. To do this, the parameter for length of the line,      , was fixed 

and  eight different log values of the variance of   were picked. Then for each single value 

chosen for  , the variance of the voltage at the end of the feeder line  were calculated over 200 

individual simulations using the same method  previously introduced. Figure (number) shows a 

scatterplot of these results. 

 
Figure: Here, the sample variance of the voltage value,   

 , was computed using the sample 

variance formula:    
∑(   ) 

   
. 

 From the plot, eight dots are perfectly connected by a straight line, as indicated on the 

figure. 
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Then a reasonable assumption was made that this straight line follows a common linear form of 

       , where   stands for the slope of the line, and   stands for the deviation. By 

substituting the variables that   and   represents into the equation, it will then be: 

  (  
 )      (  

 )    

With a few steps of transformation, the equation ends up with the form 

  
    (  

 )  

Where   is a constant representing the value of   . From the scatterplot in Figure, the line has a 

slope of approximately 1, which is the value of  . Then the equation here would be 

  
      

  

And since   is a constant,  

  
    

  

 is derived which indicates the variance of the voltage value is directly proportional to the 

variance of the power consumption. 

 

 However, after the comparison between the results of the current work and the previous 

work, this proportion may vary. The above figure shows the previous work using the same 

method. 
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The above figure: The scatterplot also shows the relation between   

 and   
 , but under the 

condition that a Wiener Process  is the type of stochastic process introduced into the system. 

  Obviously, the previous results also form a linear relation between these two variables, 

and therefore will also have the same form as in Figure ___. However, as the graph indicates, the 

slope of the line is approximately 2, not 1, which lead to the difference in the results that 

provides the relation between the variance of voltage value and the variance of power 

consumption. It will be, thereby   
  (  

 )  in the previous case, there will be a distinct result 

from the current work, that the variance of the voltage value is currently proportional to the 

square value of the variance of the power consumption. 

 

6 Conclusion 

 

The major points of the current work can be summarized as follows: 

 The randomness introduced into the system using the I.I.D. process that creates a small 

perturbation on the power consumption in this model is proven to have very little impact 

in terms of varying the solutions of the initial value problem. Thereby, assuming constant 

power consumption, as what Wang, Turitsyn and Chertkov suggested, is statistically 

valid. 

 

 The exact pattern of how the variations of the power consumption will contribute to the 

variance of the voltage value is dependent on the specific model and type of stochastic 
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process used to imitate the real life situation in the simulations. It must be taken into 

consideration before computing the safety range for voltage drop to avoid any voltage 

blackouts at the end of the feeder line using this method. 
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