
Nonlinear Energy Harvesting 
 

Group Members: Joshua Paul, Brent Cook, Luis Sanchez, Joseph Shu Tang, Yuhao Pan, Larissa Irene 
Szwez 

 
Introduction 

 
 Mathematical modeling is a significant addition to the analysis of energy harvesting systems. 
While experiments and modeling are able to obtain results on their own, the process of using 
experimentation to improve models and using models to guide experimentation quickens the discovery 
process and allows for more intelligent research. The primary benefit that modeling provides is not 
necessarily the quantitative data provided, but the qualitative information gleaned. One can analyze the 
model to predict the change in the physical behavior of the system without having to perform 
experiments, which would be far more costly. Further, by predicting the behavior of the system, it is 
known whether or not that change to the system is worth investigating further via experimentation or 
more modeling. In the following, we take a known equation for harvesting energy and analyze the 
energy harvested when the system is at various angles from the original position. The purpose of this is 
for application in hand held devices, which are often placed in pockets or purses sporadically, thus 
knowing how much energy is likely to be generated throughout a day rather than the maximum amount 
of energy generated. 
 There is no such thing as a perfect transfer of energy. This theoretical situation is called the 
“Carnot cycle”, though such a process cannot be replicated. All processes are subject to energy loss to 
the environment, such as heating or cooling the ambient air, or performing work on the walls of the 
system. When work is performed on the environment through methods such as walking or driving on a 
surface, vibrations are released into the surface that eventually dissipate due to friction. One form of 
energy harvesting is to recapture these vibrations and recapture as much of the lost energy as possible. 
This can be done with a capacitor or inductor, but also with a piezoelectric material (PM). In the later 
situation, the vibrations are used to place compressive and tensile forces on the PM. When this is done 
below the materials Curie temperature, the atoms deform in such a way that a voltage drop forms 
across the PM, the direction depending on the direction of the deformation [3]. This voltage is normally 
used to reform the material after the stress is no longer applied, but in an energy harvesting device it is 
siphoned. A rectifier must be used in such a circuit because the voltage formed by the PM will 
essentially be AC. 
 One design is to use an inverted pendulum to harvest the energy. Layers of a PM are placed at 
the base around a rod, the latter being attached to an inertial mass in order to more easily recapture the 
vibrations. The rod in this system is clamped, but the elasticity of the rod and PM allow for the inertial 
mass to oscillate linearly. It has been found, however, that non-linear oscillation was able to better 
harvest oscillations. This can be achieved by adding magnets with repelling polarities to the system. One 
is attached to the end of the inertial mass opposite of the PM and one is placed some distance Δ from 
the pendulum. At some distance Δ𝑐 the magnetic repulsion between the magnets causes the energy 
potential of the oscillator to turn from having a single potential well to two potential wells. As Δ is 
decreased further from Δ𝑐, the energy barrier between the two wells increases. The variation in the 
potential energy function of the oscillator alters the amount of energy that can be harvested, leading to 
the idea that there is a set of parameters that will maximize the energy harvested by the oscillator.  
 The creation of the energy barrier causes an increase in the deformation of the PM, resulting in more 
voltage generated by the system and more energy harvested.  
 
 



Theory 
 
The model for such a system, originally provided by F. Cottone et al., was modified to be in 

terms of the angle of the oscillator to normal as follows: 
 

𝑚𝑒𝑓𝑓φ̈ =  𝑑𝑈(φ)
𝑑𝑥

− 𝛾φ̇ − 𝐾𝑣𝑉(𝑡) +  𝐷𝜀(𝑡) [1] 
 

where 𝑚𝑒𝑓𝑓φ̈ is the kinetic force of the oscillator. 𝛾φ̇ is the energy dissipated due to the bending of the 
rod and PM. 𝐾𝑣𝑉(𝑡) is the energy transferred from the PM, where V(t) is given by: 
 

�̇�(𝑡) = 𝐾𝑐φ̇ −  𝑉(𝑡)
𝑅𝐿𝐶

  [1] 

 𝜎𝜀(𝑡) is the driving force of the oscillator, which is represented as a stochastic process. 𝛾φ̇ and 𝐾𝑣𝑉(𝑡) 
decrease the energy of the system over time, the latter of which represents the energy harvested by the 
inverted pendulum. 𝜎𝜀(𝑡) represents the energy that would normally be lost to the environment but 
instead drives the oscillation of the inverted pendulum. Although this term does not model the driving 
force as a wave, as would be the case in real life, it still increases the energy of the system as time goes 
on, allowing for analysis as to how each parameter effects the voltage generated. The values used for 
analysis were taken when the force applied was constant rather than varying about a single value due to 
the randomness of the latter force and the need for consistency. 

The potential energy of the inverted oscillator was derived by integrating the forces acting it. 
The two considered were the restoring force of the rod and the repulsion of the magnets. The former is 
well known as –K φ, where K is the effective elastic constant of the pendulum. The latter was 
approximated by assuming the magnets were small enough to be represented with single points. Under 
this assumption, the amount of magnetic force being applied in the direction of oscillation was found to 
be: 

 

𝐹=
𝑄 ∗ 𝑅 ∗ sin (φ)

(𝑙2 sin2(φ) + (𝑅 − 𝑙 ∗ cos(φ))2)3/2 =
𝑄 ∗ 𝑅 ∗ sin (φ)

(𝑙2 + 𝑅2 − 2 ∗ 𝑙 ∗ 𝑅 ∗ cos(φ))3/2 

 
where 𝑄 =  µ0∗𝑞1∗𝑞2

4𝜋
 .  Using the relation 𝐹 = −𝑑𝑈(φ)

𝑑φ
, the potential energy is found to be 

 

𝑈(φ) =
𝐾
2
φ2 +

𝑄
𝑙 ∗ �l2 + 𝑅2 − 2 ∗ 𝑙 ∗ 𝑅 ∗ cos (φ)

 

 For a system with two magnets above the oscillator, each magnet has a distance S from the 
center line, defined by the position of the oscillator at φ = 0. This approach results in a potential energy 
function defined as 
 

𝑈(φ) =
𝐾
2
𝜑2 +

𝑄1
l ∗ �𝑙2 + 𝑅2 + 𝑆2 + 2𝑙(−𝑅 ∗ cos(𝜑) + 𝑆 ∗ sin(𝜑))

+
𝑄2

l ∗ �𝑙2 + 𝑅2 + 𝑆2 + 2𝑙(−𝑅 ∗ cos(𝜑) − 𝑆 ∗ sin(𝜑))
 

Through the Superposition Principle, the effect of additional magnets on the potential energy function is 
easily calculated. 



 The voltage produced at any given moment of time is not representative of the voltage 
generated by the inverted pendulum at all points of time. This requires that the voltage of the system be 
evaluated over a span of time. In addition, the direction of the voltage fluctuates depending on the 
direction in which the beam is bending. Thus, the root-mean-squared voltage (Vrms) must be used in 
order to rectify the AC current being produced and accurately evaluate the voltage produced by the 
system.  
 The initial conditions of the system must remain constant in order to compare the Vrms 
produced, save the parameters being varied to analyze their effects. However, the starting angle and the 
starting energy cannot both remain constant while varying the spacing between the magnets (Δ) and the 
strength of their interactions (Q). Once double well behavior arises in the potential function, the 
potential energy at 𝜑 = 0 is no longer equal to the minimum of the system, and thus the inverted 
pendulum will not start with the same energy for all Δ, Q, and S. Since this starting energy will go 
towards driving the oscillations, it will artificially inflate the amount of energy harvested by the inverted 
pendulum. Since the energy being harvested by the system is being analyzed, keeping a constant 
starting energy was of higher importance than the starting angle and all calculations must be made with 
the starting angle being at the bottom of the potential well for each set of Δ, Q, and S. 

Both systems must produce the same Vrms for a given Δ and Q while S=0, or the systems will not 
be comparable. To achieve this, the total magnet interaction strength was kept constant when 
transitioning from the single magnet above the oscillator to the double magnet. 

 
Methods 

 
The Vrms was first mapped as a function of Δ and Q for a single magnet above the oscillator, 

which was done by calculating the voltage generated over a 100 second time span for spaced pairs of Δ 
and Q.  The results verified previous work [1] in that double well potentials generate a larger Vrms than 
for a single well. However, the pairs of Δ and Q that generated the largest Vrms had potential functions 
with a single well. These wells had very little variation in the potential energy for angles about φ = 0. 

Following these results, the point at which the potential function transitioned from single to 
double well behavior 
needed to be defined. To 
this end, the equality 
U(φmin ) = U(0) was 
produced. This equality 
holds true so long as the 
minimum of the potential 
function is single well, 
becoming untrue after a 
given Q surpasses or Δ is 
decreased past a given value 
and the potential function 
becomes double well. Δ was 
held constant while Q was 
increased from 0 until the 
equality was no longer valid, 
each pair being recorded. The resulting curve can be seen in figure 2(a). 
 The Vrms produced for pairs of Δ and Q along this curve were calculated with constant force, with 
each simulation being run for a 400 second time interval with 50 simulations each with a varying force. 
This force was scaled by a value between 0 and 2 based on a Gaussian distribution centered on 1. 

Figure 1: The potential energy functions for ideal pairs of Δ and Q. The pairs, 
from left top to bottom right, are as follows: (0,0), (.02121, .01067), (.04242, .07541), 

(.06364, .228), (.08442, .4829) 
 



Following, the Vrms for pairs of Δ and Q slightly larger and smaller than those found on the curve were 
tested for the Vrms produced. This was done in order to test how accurate using the above equality is for 
calculating the greatest Vrms produced. 
 For simulations where two magnets are placed above the inverted pendulum, the Vrms is a 
function of three variables: Δ, Q, and S. Since S is the new variable introduced in this system, the Vrms 

was calculated twice, once with constant Δ and once with constant Q. The results were then analyzed to 
see the effect of S on the Vrms. 
 

Results 
 

 When comparing the curve generated by the 
equality U(φmin ) = U(0) to the calculated results it 
becomes clear that the results follow the curve. 
Along the curve generated by the 
equality U(φmin ) = U(0), it was found that for 
increasing values of pairs Δ and Q, the Vrms generated 
increased. Thus, there is no ideal pair of Δ and Q for 
which the most voltage is generated. Rather, the 
limitation is on the physical constraints of the 
location for which the inverted pendulum is intended 
to be used. However, these pairs simply provide the 
most consistent results. By varying Δ and Q about the 
point (.07, .2942) it was found that increasing Q slightly greatly increases the Vrms. However, the 
standard deviation also greatly increases. Thus the curve resulting from U(φmin ) = U(0) does not 
produce the greatest Vrms for the system, although it does provide the most consistent results. 
Depending on the application of the inverted oscillator, stability or voltage produced may be of greater 
importance. 

 
 
  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Δ (m) Q 
(T*A^2*m^3)  

Vrms, ave 
(V) 

Standard 
Deviation 

0 0 0.0012 0.000011552 

0.007071 0.000435 0.0044 0.00020404 

0.01414 0.003315 0.0062 0.00029936 

0.02121 0.01067 0.0071 0.00043506 

0.02828 0.02423 0.0082 0.00048111 

0.03535 0.04541 0.0091 0.00052889 

0.04242 0.07541 0.0099 0.00049762 

0.04949 0.1153 0.0108 0.00067839 

0.05657 0.1659 0.0108 0.00064192 

0.06364 0.228 0.0114 0.0007905 

0.07 0.2942 0.0117 0.00064062 

0.07739 0.384 0.0121 0.00078317 

0.08442 0.4829 0.0128 0.00067265 

Δ (m) Q 
(T*A*m^3)  

Vrms, ave 
(V) 

Standard 
Deviation 

0.07 0.2942 0.0117 0.00064062 

0.07 0.2992 0.0232 0.0051 

0.07 0.2982 0.0076 0.0005606 

0.065 0.2942 0.0019 0.00018046 

0.075 0.2942 0.0028 0.00023107 

Figure 2: a) The curve resulting from the equality U(φmin ) = U(0) and b) the 
plot of Δ vs Q with colors representing the Vrms produced. Blue corresponds to 
low Vrms and red corresponds to high Vrms 

a b 

Table 1: The average Vrms for pairs of Δ and Q along the 
curve resulting from the equality U(φmin ) = U(0) 

Table 2: The average Vrms for pairs of Δ and Q 
slightly off the curve resulting from the 
equality U(φmin ) = U(0) 



The system with two magnets above the oscillator was shown to produce a greater voltage at 
some pair (S, Δ) and (S, Q). When Δ was held constant, it appears that there is no ideal pair (S, Q) that 
produces the greatest Vrms. This is possibly a result of the boundary conditions imposed on the 
calculations. However, there is a maximum for individual Q, with an S greater than zero that produces 
the most voltage. When Q is held constant, there is an ideal pair (S, Δ) that maximizes the Vrms. There are 
local maxima near the global maximum and the Vrms quickly decreases as one increases S or Δ from this 
ideal pair. The maxima in both of these cases will, of course, vary based on the Δ and Q respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3: a) The surface plot for Q = 2, S vs Δ vs Vrms and b) the surface plot (a) viewed from above, S vs Δ 

Figure 4: a) The surface plot for Δ = .006, S vs Q vs Vrms and b) the surface plot (a) viewed from above, S vs Q. 
The maximum Vrms is not shown 

a b 

b a 



Conclusions 
 

 It has been shown that adding magnets to and above the inverted pendulum increases the 
energy harvested from an applied force. There is no ideal pair of Δ and Q that will produce the most 
voltage; rather, Vrms increases with Δ and Q, and every Δ has a Q at which the most voltage will be 
generated. The curve generated by the equality U(φmin ) = U(0) was shown to map pairs (Δ, Q) that 
produced consistent and significant Vrms. By slightly increasing the magnetic intensity from these values, 
the Vrms produced by the system increased, showing that the equality does not produce pairs of (Δ, Q) 
that maximize Vrms. However, the increase in Q also increased the standard deviation of the Vrms, 
showing that the pairs are unstable and inconsistent in the voltage they produce compared to the pairs 
produced by the equality. As a whole, though, the system was shown to be self-averaging, ie the system 
will produce the same voltage regardless of how large the time scale provided the time scales are 
sufficiently large. This is essential to implementing such an oscillator, as the electronics which it will be 
powering or the batteries which it will be charging must be designed around the voltage produced by 
the system. 
 When adding a second magnet above the oscillator, the Vrms was found to increase. When Q is 
held constant, there is a distinct pair of values (S, Δ) that produces the greatest Vrms. This value is greater 
than for S=0, showing that the additional magnets increases the efficiency of the energy harvesting 
inverted oscillator. However, this was a maximum for a single value of Q. If Q is altered, then the ideal 
pair of S and Δ will change. There was no ideal pair (S, Q) that maximizes the voltage produced, though 
this is likely a result of boundary conditions. However, when both Δ and Q were taken to be constant, 
there was a non-zero S that produced a maximum voltage.  
 Overall, the main constraint on the efficiency of the energy harvesting inverted oscillator is the 
physical space and materials available for the oscillator. There is not an ideal set of Δ, Q, and S that 
produces a maximum voltage, only sets that produce local maxima.  
 

Future Work 
 A relationship between Δ and Q that results in the maximum Vrms has yet to be found can be of 
vital importance to maximizing the energy harvested by the inverted pendulum. Although the current 
relationship provides a close approximation, the large increase in Vrms warrants future work to derive 
this relationship. Further, the consistency of the voltage generated by the ideal (S, Δ) in the system with 
two magnets above the oscillator has not been determined. Refinement in the precise value of this 
maximum and determining the stability of it must be done in order to determine whether it is truly able 
to generate more energy than the system with a single magnet above the oscillator. 
 Given the benefits of having two magnets above the oscillator rather than one, looking at 
placing additional magnets in the system is a promising avenue of future work. Do to the similarity in 
calculations and the Superposition Principle, this can be easily calculated once the foundation work is 
complete. Further, altering the arrangement of the magnets may yield an increase in the amount of 
energy harvested. 

In addition, the current driving force, while sufficient for the work done, can be improved to 
better model the waves that will be driving the oscillation. Altering the driving force to better match the 
vibrations produced by walking, wind, and cars will allow for better prediction in the efficiency of the 
inverted oscillator. 
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