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Migraines are recurrent in many individuals and are characterized by a throbbing pain in 

the head, normally on one side of the head or the other. These headache attacks are often 

associated with nausea, vomiting, and sensitivity to light, sound and movement1. Individuals 

suffering migraines often seek dark, quiet places to lessen the effects of the symptoms. This state 

of a migraine is debilitating and frequently interrupts the sufferers day-to-day activities. Because 

migraines are so debilitating, migraines are ranked at 0.71 on a disability scale from 0.0-1.0 (1.0 

being highly disabled)2. In addition, migraines can be classified into two types: migraines with 

aura (MA) or migraines without aura (MO). In MA, additional neurological symptoms (aura) 

occur. Such symptoms include visual hallucinations and are caused by spreading depression, 

which will be discussed later in this paper. The aura phase occurs before the headache phase and 

lasts for usually less than one hour. It is argued that if SD occurs in MO, the physiological 

phenomena must remain clinically silent (meaning clinical symptoms not present), and the 

neurological symptoms must last less than five minutes1. Because of the short duration of time, 

noninvasive imaging is difficult if SD is silent. By creating a mathematical model, scientists 

maye be able to better understand migraines (particularly the SD phase) without going through 

the difficulty of imaging an individual experiencing SD. 

Migraine aura symptoms are caused by a phenomenon called Spreading Depression (SD). 

SD is a chemical imbalance in the brain due to seizure-like discharges of neurons, and it usually 

lasts no longer than an hour. It is not known whether SD is also responsible for the subsequent 

headache phase of the migraine, and in particular in cases of MO. During SD, there is a 

significant increase in blood flow to particular regions in the cortex, or hyperemia, that lasts for 2 

minutes. Then, the hyperemia is followed by a 2-hour decrease in blood flow, or oligemia. It is 

not known whether the changes in blood flow are merely something that occurs during SD, or 

are part of the cause of SD. To determine where SD occurs in the cortex during a migraine 

episode, measuring the duration and velocity of the hyperemia and oligemia phases were used. In 

particular, the concentration of certain ions in the blood, such as potassium ions, are used to 

measure, and subsequently model, the SD. The concentration of potassium ions is known as the 

activator. The neurons in the area affected by SD are relatively inactive (hence the name). The 

neurons beyond the area affected by SD have a high-frequency of activity and “increased 

synaptic noise”. The neurons at the edge of the area affected by SD undergo seizure-like 

discharging. When the neurons at the front of the area affected by SD discharge, this provides an 

“electrical signal transmission” to other surrounding neurons not affected by SD, which causes 

hyperemia in the surrounding areas. The hyperemia in the surrounding areas outside the areas 

affected by SD can cause the estimated area affected by SD to be overestimated when measured. 

The hyperemia in the neurons not affected by SD can cause the neurons to be less susceptible to 

SD. This resistance to SD is known as the inhibitor. 

The model proposed by Markus A. Dahlem and Thomas M. Isele is a modified version of 

the FitzHugh-Nagumo equations with diffusion in the activator equation:  
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where u is the activator value, v is the inhibitor value, t is the value for time,      is the activator 

saturation value, D is the diffusion constant   is the time separation constant, and   is the initial 

inhibitor state. It is important to note that the activator value and the inhibitor values represent 

energy states, and do not actually represent any physiological phenomena explicitly. While this 

model has its advantages, there are two noteworthy problems that arise from the model. First, u 

has no mechanism that prohibits it from becoming negative, which is not very plausible. 

Secondly, 
  

  
 is always positive, which prevents the value of v from every leveling off with 

respect to time. From the phase diagram if Dahlem’s model (Figure 1), it is clear there are two 

relevant nodes. Without the inhibitor term in the activator equation (Equation 1), these two nodes 

are stable. However, with the inhibitor term, both of these nodes are transient, and these nodes 

shift depending on the inhibitor value. While this is desirable for the rightmost node in the phase 

diagram, this is not desirable for the leftmost node, which must remain at the origin in order to 

accurately model the phenomena. 

Due to the previously-mentioned flaws with Dahlem’s model, a new model was proposed:  
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where u is the activator value, v is the inhibitor value, t is the value for time,      is the activator 

saturation value, D is the diffusion constant   is the time separation constant,   is the inhibitor 

scaling coefficient, and   is the initial inhibitor state. In this model u has a mechanism which 

prevents it from becoming negative: the 
    

   
 term. Furthermore, with the addition of the     

term in the inhibitor equation (Equation 4), v can now level out. Lastly, from the phase diagram 

of the new model (Figure 2), you can see that, as with the previous model, there are two nodes. 

Different from the previous model, however, is that the leftmost node is stable irrespective of the 

value of v, which is desired behavior. 

 
The inhibitor equation in the new model (Equation 4) is a linear, first order differential 

equation, which is solvable. Assuming an initial condition of  ( )   , solving the inhibitor 

equation for  ( ) gives the following equation:  
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In conjunction with simplifications in activator equation for the new model, described later in the 

paper, this equation can be analyzed numerically (Figure 5). This is further evidence that  ( ) 
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Figure 1: Dahlem's Model Activator Phase Diagram
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Figure 2: New Model Activator Phase Diagram



has the potential to level out, but does not have the potential to become negative, which is 

reasonable and expected. There are a couple of noteworthy features of the equation. For starters, 

the equation can be divided into 2 parts: a part that is dependent on the u, and a part that is 

independent of u. Initially, the part that is independent of u is very small, which means the part 

that is dependent on u will dominate the part that is independent on u. Additionally, each part has 

its own unique coefficient: for the part that is independent on u, the coefficient is 
 

 
, and for the 

part that is dependent on u, this coefficient is   (which is expected given that   is the time scaling 

factor). Lastly, there are many exponential terms in the equation for  ( ), each with an 

exponential growth/decay constant of    . This means the equation for  ( ) can be altered to 

use 3 parameters: 
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Without diffusion, the activator equation for the new model can be analyzed (Figure 3). 

The figure produced by this analysis is revealing because it shows a cross-section produced by 

the activator equation, or, in other words, it shows the general shape of the wave of the spreading 

depression. As expected, there is a very quick and very large increase in the activator value 

initially, which nicely illustrates the hyperemia phase of the spreading depression, followed by a 

very slow and very gradual decrease in the activator value, which illustrates the oligemia phase 

of the spreading depression. Unfortunately, due to a lack of available data, the behavior of the 

oligemia phase cannot be verified. Authenticating this behavior is something that will have to be 

done in future work. 

The activator equation for the new model (Equation 3) WITH diffusion is unsolvable, 

which means certain assumptions must be made in order to model it. For this paper, radial 

symmetry was assumed, which simplified the activator equation: 
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The above equation can be solved numerically (Figure 4). There are a couple crucial features of 

the figure generated that are important to observe. Firstly, it is important to note the significance 

of the boundary condition for the boundary at    . This boundary condition, a simple Gaussian 

bell curve shown below, represents an initial environment factor that triggers the migraine: 

 (   )     
     

where    is an arbitrary coefficient. This boundary condition demonstrates how environmental 

factors affect the migraine: the environmental factor creates a sudden spike in the potassium ion 

concentration level in the blood, which subsequently triggers the migraine aura. 

Other important features of the figure relate to the shape and behavior of the activator 

wave. The wave created by the activator grows linearly with respect to the radial distance over 

time. This indicates the total volume of the brain affected by the spreading depression increases 

cubically. Furthermore, there is a subtle decrease in the slope of the wave with respect to time, 

which indicates, after a certain point in time, there is a global (but not necessarily uniform) 

decrease in the activator level of the volume of brain affected by the spreading depression. 

Suppose there is a certain activator threshold in which activator values that exceed this threshold 

will result in in pain. Thus, what the model shows is that the volume of the brain that is affected 

by pain will initially increase cubically, but will gradually fade away over time. 
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Figure 3: Activator Model Without Diffusion
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Figure 4: Activator Model With Diffusion
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Figure 5: Inhibitor Model
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Though there are many theories as to the cause of migraines, the papers by Dahlem 

mainly investigated the migraine generator and the spreading depression theory. In his papers, 

Dahlem collected the data of transient cortical wave patterns and built the canonical reaction-

diffusion model. However, his model is not sufficient to explain the behavior of Spreading 

Depression because of the possibility for the activator to become negative and the ever 

increasing inhibitor. In this paper, we improved the model of the SD based on information 

gathered from Dahlem’s papers because due to limitations in technology, it is difficult to collect 

raw data. Currently, MRI is used to measure changes in behavior of SD. Because SD lasts for 

such a short period of time, it is difficult to image a patient experiencing migraine aura. It is also 

difficult to measure SD when the aura remains clinically silent because there are no signs of the 

incident occurring. For future work, the model could be modified to account for multiple starting 

points in SD as opposed to the current single starting point. In our model, we also assume the 

edge of SD is radially symmetric from the starting point. Though it is uncertain if MO and MA 

have same pathophysiological mechanisms, Dahlem thinks it is likely. If this theory is correct, 

there would only be the need to find one treatment for MA and MO. 
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