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Introduction 
 

Mathematical modeling is a very useful and helpful tool for studying the search for a 
parked car. Imagine parking on the side of a forest road in order to go hiking. After hiking 
through the woods for a while, you emerge from the trees and are once again on the road. 
However, you are no longer near your car. You can assume that you know the probability 
density for the location of the car, since you didn’t hike too far. What is the best way to go 
about finding your car? Through mathematical modeling, we can discover an optimal search 
pattern for finding the parked car.  

In the traditional linear search problem, an object is placed on a line using a given 
probability density. Starting with an initial step length, the searcher goes back and forth using 
step lengths calculated from a specific formula until the object is found. To simplify our analysis, 
we consider the one-sided search problem (Figure 1). Applications of such a problem can 
include a simple robot that returns to the origin after each step to report whether it has found 
the car or not. 
 The overall goal of our project is the analysis of a linear search problem for an object 
placed using a given probability density function using analytical and numerical methods. 
Currently, we have developed numerical methods simulating the search for an object placed 
using an exponential distribution function and the minimization of the search for the object. 
Using Matlab, we have modeled an assortment of searches to determine an optimal sequence 
for our fixed parameters.  
 In order to increase the complexity of our model and model a more realistic problem, 
we have introduced a further sight parameter. This parameter allows the searcher to see an 
additional distance ahead after each step. Applications of this problem include a simple robot 
on a winding road fitted with a camera. After each step, the robot can look ahead a different 
distance, depending on the curves in the road, and determine whether the car is there or not. 
Using Matlab and Java, we have modeled the searches using a sight function determined by a 
normal distribution. Again, the optimal stepping pattern was determined for this situation. 
Furthermore, the effects of the sight parameter on the total expectation length and the 
parameters used to determine step length were tested. 

Through mathematical modeling, we can reduce the cost and time spent determining 
optimal paths that can later be applied in real-world situations. For example, we can test 
multiple probability distributions for the location of the car without physically setting up the 
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parked car. In our project, mathematical models can help to predict the position of a car and 
further serve as guidelines for travelers and primary sources for researchers who want to 
observe the visualize aspects of each case on each experiment. For researchers, models provide 
an overview for a case that may not be practical in the real world. In summary, development of 
a model for the search for a parked car helps us to predict the car position, minimize the cost, 
and provide insight into real world behavior. 
 

Mathematical Model  

The following assumptions were made in our reference paper (Ref. 1): 
 The search problem is only on a one-sided gatherer version and the hidden object  , 
the car position, is located on the half-line   . In our analysis, we consider the same one-sided 
searcher problem.  
 
 
 
 
 
 
 
 

Figure 1. Diagram of one-sided gatherer movement (Ref 1.) 
 

In the paper, the distribution function used was the homogeneous tail distribution function, 
also called a Pareto distribution, shown below.  

 
                          

 
However, in our analysis, we will use an exponential probability density for the car’s location. 

 
Using the Pareto distribution, the paper (Ref. 1) arrived at the following conclusion. The optimal 
plan should satisfy a two-term recurrence, the variational recursion. 
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However, in the theory section below, we analyze the problem from the perspective of a 
general given probability density function. 
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The following variables are used in our analysis: 
x = step length, given by the geometric series: x = Δαn 
Δ,α = geometric constants, to be optimized for minimization of search length 
L(x,H): the total distance travelled until the point   is found, given as a function of    
E(x) =  L(x,H) : the cost/expectation of the search plan as a function of the total distance 
travelled  
P(x): chosen probability density function  
p(x): cumulative distribution function for the chosen probability density function 
S = sight parameter, determined by the following distribution: 
 

 
 

Figure 2. Normal distribution for sight parameter, with μ = .2, σ = .2 
 
Theory 
 

The following presents an analysis for the classic linear search problem. 
 
I. Symmetry of the Problem 

Starting at any point on the road and using the assumed probability density function, 
we would generally expect the result of a symmetric distribution for the searching 
process. For a searching process started by the center, we would go through each 
opposite direction with an equal search distance. The above two identities would 
have allowed us to only solve either side for the optimal result, typically as we are 
aiming at solving for the shortest value of the expectation for the cost function.  
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II. Approach to an Analytical Solution 

There are however, two methods to approach the solution for the expectation for 
the cost function.  
The first method is done by assuming a certain position of the object, solving for the 
expectation value for each single position, and then summing up all individual values 
by the end. Such a method is detailed in the following: 

 
Here we define the probability density and its anti-derivative:  
 

  

  
  ( )         Eq. 1 

 
Where P(x) is the probability density function and p(x) is the anti-derivative of 
probability density function, also known as the cumulative distribution function. 
 
For each certain assumed position of the object with respect to the stepper index n, 
we shall have the individual expectation value such that:  
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     Eq. 2 

 
Where L is the total search distance for the single process: 
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Consequently, substituting L for the sum of each single step, we shall have the actual 
form of the summation as follows: 
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For a final sum of all possible positions of the object, one shall rearrange the above 
expression in a better form such that:  
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The above equation is not yet the eventual answer we are looking for, since we need 
to assume the following equation for all the individual positions for the object. 
Therefore, we would need to evaluate each single value for the above expression 
with respect to different possible positions for the object and sum the results to find 
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the eventual value for the final expectation of the cost function. From here, we 
could hopefully solve for the conditions for the minimization.  
 
The above evaluation may seem to be a straight forward approach for solving the 
problem. However, one obvious disadvantage is that it takes many steps for the 
summation expression, which eventually arrives at yet another summation within 
the above summation. Nonetheless, there is not yet a better arrangement for a 
single summation term for the expression for the cost function. Consequently, a 
better approach is required for the further calculations. 
  
The second method for approaching the problem is generally tricky but still a better 
method.  We assume the potential position of the object is lying in between each 
step with respect to their probabilities of actually being in the position.  
 
Therefore, the total distance for the searching process, using the condition that the 
object is lying in between each searching step, is listed as follows, respectively: 
 

                (     )            (            )   Eq. 6 

 
In a brief conclusion:  
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          Eq. 7 

 
Now, to treat the probability of the car lying in between the  n-1 and nth step is 
relevantly regarding the probability of taking the total searching distance as long as  
   indicates. Therefore, a whole new rearrangement should be introduced to the 
solution approach: 
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         Eq. 8 

 
Hopefully, by the earlier definition of the anti-derivative of the probability density 
function (cumulative distribution function), we are able to solve the integral of each 
term in order to have a better rearrangement of the expression for the cost 
function:  
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In the meantime, we could break the terms separately, and pair them in the 
following manner:  
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For each sum of pairs of positive and negative     (  ), the cancellation is thus 
available for driving the eventual form of the expression in terms of: 
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      Eq. 11 

 
 

III. Analysis of Analytical Solution 
As Eq. 11 indicates, there are two summations for infinitely many terms; yet as the 
probability density function can be randomly chosen, there is not much more 
simplification of Eq. 11 that can be performed. Therefore, we cannot solve the 
problem analytically past this point and instead must turn to numerical methods. 
However, one typical characteristic of the eventual expression would have granted 
us the possibility of solving for the minimizing condition with computational 
simulations. In the final Eq. 11, the expectation length is described as the difference 
between two values. Since the value of the probability function is less than one in 
nature, the function will converge to a certain value for the infinity sums.       
     

IV. Introduction of a sight parameter  
In practice, a sight parameter is required to further realize the modeling. The sight 
parameter itself must have the physical affections to the construction of the 
equation that the searching process is to be done whenever the object is within the 
visible range. To describe the visible range after each step, we decided to choose 
another governing probability density function instead of introducing a fixed length 
of the visible sight. One obvious reason for such a set-up is the assumption of non-
uniform terrain along the searching process. We therefore, define the probability 
density for the visible range, say, the sight function as follows:  
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    Eq. 12 

 
The above sight density function represents the probability of the actual length 
along the searching process, with respect to the position of the detector. We can 
see, however, several consequents result from the new definition which would 
cause extremely problematic conditions for the further analysis:   
1. Overlapping  

By the looks of the probability density function, a minimum sight is ensured by 
the delta function in the first place; the vision, by chance, could be extremely 
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long, which is capable of “seeing through” the whole distance to have the object 
spotted, thus ending the searching process. For instance, even by sitting at the 
origin of the searching process, the vision would still be extremely long, and 
could potentially spot the object before any steps were actually taken. These and 
other certain characteristics of the sight function can be quite consistent with 
reality, since we might expect to have the car spotted in the first place if the 
weather is not that bad, and the road is straightly long…etc.   

2. Probability density function in nature  
As the sight density function is constructed in the first place, we wouldn’t except 
to have any analytic solutions that fit in certain conditions as might be needed in 
further analysis. One for instance is the condition for if the object is spotted 
along the searching process is however, required for the evaluation of the 
expectation value for the total distance (the cost function), yet the probability 
density structure of the sight function provides quite an ambiguity for the 
solution.  
 

A clear definition for the above condition is thus required. We hence introduce the 
“stopping time”, such that:  
 
Let K be the first time that the object is spotted along the search road, such that:  
     (  )   , where:  (  ) is the probability function (anti-derivative of the sight 
function) of the sight, l is the assumed position for the object. 
 
The above definition offers us an increased chance for approaching the eventual 
results. Assumingly, the object lies solidly at the position l along the road, therefore, 
the chance of having the object found in Kth (the stopping time) step would be a 
product of the probability of object to be found in Kth step, and the probabilities of 
the object not to be found before Kth step, which is shown as follows:  
 

    (       (  )   )   (       (  )   )     
 (           (    )   )   (       (  )   )   Eq. 13 

 
Where  (  ) is the assumed probability function for the object to be found with 
respect to the position of the detector along the road.  
 
Therefore,    presents the individual probability for the object to be found until the 
Kth step of the searching process. So the total distance the detector has travelled is:  
 

    ∑   
 
          Eq. 14 

  
Yet, the above probability function doesn’t yield the whole probability of this 
saturation, since the object would only have a “chance” of randomly lying on l, we 
have to count the chance of such an occurrence: 
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Where l is not necessarily lying merely near the Kth step, due to the overlapping, so 
that the above integral is assumed to be evaluated under the condition of the object 
lying in between Nth and N+1th step away from the Kth step. As we have already 
discussed before, the overlapping character of the sight function provides an 
extremely harsh condition for any further analysis.  
 
The total distance we expect with respect to the probability density function and the 
sight density function is to be the sum of all those above terms from N=1 to infinity, 
and from K=1 to infinity, shown as follows:  
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The above equation may serve as an analytic result for our problem, yet it is 
impracticable for any simulation. We can see this result is impractical since by 
calculating the whole function, the “stopping time” must have a clear expression, so 
that the simulation could appreciate the process. However, as the probability 
density function for the sight in nature, the evaluation of the stopping time is almost 
impossible to execute.  
 
Therefore, instead of the above conclusion, our calculation follows merely two 
simply logical processes:  

1. Check at each position to see if the object is spotted. If so, then end the 
searching process.   

2. If the object is not yet within the visible sight, then continue the searching 
process until condition 1 occurs.  
 

It might be seemingly strange for such tedious calculations to result in the definition 
of only two logic process. However, the above logic process executes the evaluation 
process well in computational simulations. As detailed in the Numerical Methods 
and Computer Simulations section, we may find that hundreds or thousands of 
results from the simulation are chaotic and inconvincible, yet a million or a billion 
results would prove a general structure of the actual result of the searching process. 
Our previous analytical result has provided a strong milestone for the necessity of 
computational simulations to be involved.       
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Numerical Methods and Computer Simulations 
 
 We know that the infinite sum that defines the expectation of the length is infinite; 
however, we don’t have an easy way of analytically computing the values of the first two step 
points which would recursively solve the entire pattern. This means we have to go to computer 
simulations in order to solve this problem; more specifically, we need to use the Monte Carlo 
Method. The Monte Carlo Method is a type of simulation that is used when there is a random 
event occurring in the simulation. For example, one can roll two, six-sided die over and over 
again and tally the results in order to find the probability of an individual roll begin rolled. In our 
case, our random events are the probability of the car being placed along the forest road and 
the sight parameter that is calculated at each stepping point. We need to run many (~one 
billion – one trillion) simulations of placing the car and finding the length to get to the car in 
order to optimize the step points that we want to use. We will pick two points to begin with, 
run the simulations, average the length to get to the car, move the points slightly, and continue 
this process until we find two step points that give us the minimum length to the car.  
  
 Before we do this, we want to see what sort of data the computer is dealing with to give 
us some insight into the behavior of this problem. We can run the simulation many times and 
create a histogram in order to see the curvature of the lengths that we receive by mixing the 
continuous probability density function with the piecewise function that represents the lengths 
for each car placement. In the paper, the probability density used is a parabolic density with 
exponent -α. This density gives an optimal pattern that is a geometric series. The density that 
we will be using is an exponential function with λ = 1 to simplify this function. However, unlike 
the parabolic equation, this density function will not give a perfectly geometric series of steps. 
We still know that the geometric series will give us a very good result, so we will be using this 
pattern to simplify these preliminary simulations. The geometric series will be represented in 
the following form:       . The following figure shows us what the frequency of different 
lengths are when we set α = 1.10 and Δ = 0.30. This gives a nice curve that shows the mix of the 
geometric series that is seen to dominate the graph early and the exponential probability curve 
that creates the tailing off as the values of the steps get large: 
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FIGURE 3. Histogram of Different Car Placements 

 
 Now, we need to find out what the optimal α and Δ should be for this exponential 
density function. This first simulation doesn’t involve the sight parameter, because we will want 
to compare the two graphs later. In order to do this, we need to pick α and Δ values in a certain 
range in order to zero in on the correct pair. For each pair, we will run a large number of 
simulations to see what value gives the minimum expected length for finding the car. The graph 
below shows how this data becomes quite accurate when large sample sizes are taken. When 
only 1000 simulations are run, we see a very piecewise and choppy graph, but when the sample 
size is closer to one million, we get a nice graph that helps to verify our results. In the following 
graph, the different curves represent different α values and the x-axis denotes different Δ 
values. The expected lengths are shown on the y-axis: 



11 
 

 
FIGURE 4. Optimization of Geometric Sequence without Sight Parameter 

 
 As we can see, the values tend to converge close to α = 2.1 and Δ = 0.5 with a length of 
4.79. From here, we can choose smaller ranges around these values to get a more accurate 
result, but we are just using this graph to show how to get these optimal values, so we will not 
be taking this step here. This graph is a great representation of how the Monte Carlo Method 
can get us very good results when using a high sample size, and we can see that all of these 
curves appear to be differentiable. From here, we can use a similar method using two pivots 
instead of an α and Δ value in order to find the steps that need to be taken to minimize the 
length for an exponential distribution as opposed to a parabolic one.  
 
 In order to create a more realistic situation, we add in an additional sight parameter. 
This parameter is determined after each step using a normal distribution, as shown Figure 2. 
However, we decided to implement a condition such that the minimum sight value after any 
given step is equal to the mean sight parameter of the normal distribution. Therefore, at any 
point in the time, the sight is greater than or equal to the mean of the normal distribution. In 
Figure 2, therefore, the minimum sight is .2 and we name the sight parameter = .2. For each 
step, a random sight is chosen by the simulation in accordance with the normal distribution. If 
the car is spotted within this sight, the robot returns to the origin and the search is finished. If 
the car is not spotted, the robot returns to the origin and the search continues on in accordance 
with the geometric stepping pattern. 
 
 Now, we want to see what happens to the α and Δ values when we add in this new sight 
parameter and how the relationships between the variables change. The first graph below is a 
simulation that runs along a range of 10 α values that is one-tenth of a unit long. The resolution 
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for the Δ values is the same. In this simulation, only one million data points were used to 
calculate the average length for each α/Δ pair. We see from this graph that the sight parameter 
makes everything a little messier as we now have two random variables instead of one: 
 

 
FIGURE 5. Optimization with Sight Parameter and N=1,000,000 

 
 Obviously, this graph is of little use to us as we cannot zero in on the correct α and Δ 
values. In order to fix this problem, we raised the number of iterations to one billion as we need 
quite a few orders of magnitude to get a good reading seeing that Monte Carlo simulations 
converge at a rate proportional to the square root of the number of iterations. The graph below 
is the same resolution as the previous graph with just one billion iterations instead of one 
million: 
 



13 
 

 
FIGURE 6. Optimization with Sight Parameter and N=1,000,000,000 

 
Now we see the similar pattern of α lines showing up, and this is a graph that we can use to 
obtain the values we are looking for. In this graph, we see that α, Δ, and the minimum average L 
values are 2.36, 0.19, and 4.04 respectively.  
  
 Now that we have these values, we want to see what happens to the α and Δ values as 
the sight parameter is shifted up and down. We expect these values to change as the problem 
changes depending on how far one can see down the forest road. To find these relationships, 
we calculated the optimal α and Δ values for fifteen different sight values ranging from 0.10 to 
0.25. The graphs showing the relationship are shown on the following pages: 
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FIGURE 7. α vs. Sight 

 
FIGURE 8.  Δ vs. Sight 
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FIGURE 9. Average Length vs. Sight 

 
 From these figures, we see something interesting that applies to the physical world. In 
Fig. 6, we see that α grows proportional in a linear manner to the value of the sight parameter. 
This makes sense as α is the geometric ratio of the step values, so the further you can see, the 
longer each consequent step should be. Conversely, with the Δ values, we see that it is inversely 
proportional. This is because the more you can see down the road, the shorter your initial step 
needs to be. Finally, we see that the length gets shorter as you can see further down the road, 
and this just verifies that our model fulfills this relationship. 
 
Conclusion 
 

 Our main goal was to determine the optimal parameters for sight and the 

geometric parameters  and  for a minimized search length. Being unable to do this 
analytically, we did Monte Carlo simulations to find the values numerically. First, we did 
preliminary simulations that did not involve the sight parameter. The preliminary results were 

2.1, 0.5, and 4.79 for , , and L, respectively, which is represented in Figure 4.  
After considering the parameter sight, we found those values to be 0.2, 2.36, 0.19, and 

4.04 for sight, , , and L, respectively. Similar to Figure 4, Figure 6 represents the results with 
the parameter sight taken into consideration. In addition, we studied the relationships between 

sight and the other parameters. The result was the increase of  and decrease of  as the sight 
increases. Also, L decreases as the sight increases. Those relationships reflect what each 
parameter means in physical meaning. When you can see more, you can move a greater 

distance ( vs. sight) and reach your final destination faster (L vs. sight) as well as starting with 
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a smaller initial step ( vs. sight). On the other hand, the degree of dependence in those 
relationships cannot be determined exactly since only 15 points were used to visualize the 

dependence graphically. While the graphs for ( vs. sight) and ( vs. sight) were not very 
smooth, the graph displaying (L vs. sight) was quite smooth and suggests an inverse linear 
relationship. Those relationships can be seen in Figures 7 through 9. 
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