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1 .  I N T R O D U C T I O N   

1.1 Simple vs.  Vibrating Pendulum  
 

People maybe well acquainted with simple pendulum problems. It is stable downward 
vertically, and unstable at inverted position. However, when adding a vibrating base on the 
pivot of the simple pendulum, the system seems to be stable at the inverted position. Simple 

pendulum swings in a smooth motion (see figure 1a) and is often modeled as !
!!
!!!

+ 𝑔𝑙𝑠𝑖𝑛𝜃 =

0, where g is the gravitational acceleration, l is the length of the pendulum, and 𝜃 is the 
angular displacement about downward vertical. However, adding a vibrating base would 
make the motion no longer smooth. It creates small but rapid oscillations on top of the 
swing, which adds difficulties in the modeling (See figure 1b). 

                                     

1.2 Background  
 

This subject, pendulum with vibrating base, is in fact well explored by scholars and scientists in the 
history. In 1908, a scientists call A. Stephenson first questioned that upper vertical position of the 
pendulum might be stable when the driving frequency is fast. No one could scientifically answer this 
unusual and counterintuitive phenomenon until almost fifty years later, a Russian physicist Pyotr 
Kapitza successfully analyzed the stability of this system by separating the motions into fast and slow, 
and introduced a new concept called Effective Potential.  

2 .  O B J E C T I V E S   
During the midterm, we have derived the Equation of Motion, Lagrangian, and the effective potential of the 
vertical angle position. Now, we are interested in deriving the equations and analysis stationary solutions of 
any arbitrary angle position of the system. Our goals are:   

1) Derive the Lagrangian for the arbitrary angle 
2) Find the Effective Potential using the Averaging technique 
3) Analyze the stability at each stationary position  
4) Perform an experiment to compare actual results with theoretical findings  
5) Error analysis to explain the differences  

 

3 .  V A R I A B L E S  
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 𝑑!: Amplitude of base oscillations  

𝜔: Frequency if base oscillations  
𝑙:   Length of the pendulum  

𝜃:   Counter clockwise angular displacement of pendulum  
𝑔:    Gravitational constant  

𝐾:  Kinetic energy  
𝑈:  Potential energy  
 

4 .  A R B I T R A R Y  A N G L E  

4.1. Equation of Motion 
 
Referring to the figure below, we separate the pendulum to x and y direction. The horizontal x-axis is 
defined as the positive to the right and the y-axis is 
defined as the positive to the downward. We also 
assume the gravitation is pointing downward and angles 
are zero in the y direction with positive in the 
counterclockwise direction. 

 

The following equations are derived according to the x 
and y directions in an arbitrary angle:  

• 𝑥 = 𝑙𝑠𝑖𝑛 𝜃 + 𝑑! cos 𝜔𝑡 cos  𝜙 

• 𝑦 = 𝑙 − 𝑙𝑐𝑜𝑠 𝜃 + 𝑑! cos 𝜔𝑡 𝑠𝑖𝑛𝜙 
 

where sin(𝜔𝑡) is the motion of the vibrating base and 𝜙 is the counterclockwise angle of base. 
 

Then, the velocity in each direction will be:  
 

•  𝑣! = 𝑙𝜃 cos 𝜃 − 𝑑!𝜔 sin 𝜔𝑡 cos  𝜙                 (1) 
• 𝑣! = 𝑙𝜃sin(𝜃) −𝑑!𝜔 sin 𝜔𝑡 𝑠𝑖𝑛𝜙                 (2) 

 
The velocity in each direction is the fundamental input for the later analysis in this project.  
 

4.2 Lagrangian and the Euler -Larange Equation  
 

Now that we have derived Kinetic and Potential energy in terms of the variables for our system, we 
will use the Lagrangian to further analyze the motion of the Pendulum with a Vibrating Base. Where 
Kinetic Energy is K, and Potential Energy is U, the Lagrangian (L) is defined as follows: 

𝐿 = 𝐾 − 𝑈       (3) 

4.2.1 Why Lagrangian 
 

The Lagrangian is very useful for us because, in a sense, it contains everything that we need to 
know about the motion of our system. The Lagrangian also demonstrates a very interesting 
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principle known in Physics as the Principle of Least Action. This principle basically states that in 
nature, a system will always act in a way such that the ‘Action’ of the system is minimized. It 
happens that the Action of the system is also defined as the area under the Lagrangian vs Time 
curve, and the Principle of Least Action states that the mechanics and motion of the system will be 
such that this area is at a minimum. The importance of this will become clearer when we introduce 
the Euler-Lagrange Equation.  

 

4.2.2 Derivation  
 

For now, we will derive the Lagrangian for the Pendulum with a Vibrating Base. Recall the 
expressions we derived for Kinetic and Potential Energy. By inserting these into (3), we get the 
following expression for the Lagrangian. 

 𝐿 = !
!
𝑚(𝑙!𝜃! + 𝑙𝑑!𝜔𝜃 𝑠𝑖𝑛 𝜔𝑡 cos  (𝜃 − 𝜙) +𝑚𝑔𝑙𝑐𝑜𝑠𝜃 + 𝑔𝑑!𝑐𝑜𝑠 𝜔𝑡 𝑠𝑖𝑛𝜙     (4) 

This certainly is the Lagrangian, but we realize that it would be convenient if we had something a 
little bit simpler to work with. Fortunately, we can take advantage of two properties of the 
Lagrangian to greatly simplify our result. We can realize that for our purposes: 

i) The Lagrangian does not depend on constants. 

 𝐿 ≡ 𝑎𝐿 
ii) The Lagrangian does not depend on functions of only time. 

 𝐿 ≡ 𝐿 + 𝑓(𝑡) 

By pulling a length term and a mass term out of our Lagrangian (4), and by eliminating everything 
that is purely a function of time, we are left with the following expression for the Lagrangian. 

𝐿 = !
!
𝑙𝜃! + 𝑑!𝜔𝜃 𝑐𝑜𝑠 𝜃− 𝜙 𝑠𝑖𝑛𝜔𝑡+ 𝑔𝑐𝑜𝑠𝜃   (5) 

With a little bit of further manipulation, keeping in mind that φ is a contant, dependence on 
!!
!"
   

can be eliminated. Thus (5) becomes: 

𝐿 =    !
!
𝑙𝜃! + 𝑑!𝜔! sin 𝜃 − 𝜙 𝑐𝑜𝑠𝜔𝑡+   𝑔𝑐𝑜𝑠𝜃    (6) 

This is the final version of the Lagrangian. 

 

4.2.3 The Euler-Lagrange Equation  
 

The next step is to use the Euler-Lagrange Equation. This equation was formulated in the 1750’s by 
Euler and Joseph Lagrange. Fascinatingly, the solutions to this differential equation will yield the 
functions for which a system is stationary. From here, stability of these stationary points can be 
analyzed. The Euler Lagrange Equation can be presented as follows: 

!
!!

!"
!!
− !"

!"
= 0      or     

!
!"

!"
!!
= !"

!"
               (7.1 & 7.2) 
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We can break this into three steps in order to show the mathematics behind this process. First, we 
will find the partial derivative of (6) with respect to θ. 

!"
!!
= 𝑑!𝜔! cos 𝜔𝑡 𝑐𝑜𝑠 𝜃 − 𝜙 − 𝑔𝑠𝑖𝑛𝜃      (8) 

Now we will take the partial derivative of (6) with respect to 𝜃, and then the time derivative of 
that.  

!"
!!
= 𝑙  and      

!
!"

!"
!!
= 𝑙Ӫ   +   𝑑!𝜔                  (9.1 & 9.2) 

Now we can plug (8) and (9.2) into the Euler-Lagrange Equation (7.2). 

𝑙𝜃 = 𝑑0𝜔2

𝑙
cos 𝜔𝑡 cos  (𝜃 − 𝜙)                      (10) 

Equation (10) can be presented as follows. 

𝜃 − !!!!

!
𝑐𝑜𝑠 𝜔𝑡 cos 𝜃 − 𝜙 + !

!
𝑠𝑖𝑛𝜃 = 0      (11) 

This is our final form of the Euler-Lagrange Differential Equation. By solving this Differential 
Equation, we can find stationary points for the Pendulum with a Vibrating Base, and we can analyze 
these stationary points for stability. This process will be examined in the following sections. 

4.3 Special Cases: Horizontal and Vertical Angles  
 

 Two “special cases” of the arbitrary angle are the horizontal and vertical angles. Although to constraint 
the length of our report we chose to only show the derivation of equations belonging to the arbitrary 
angle, in both the vertical and horizontal case we can use the derived equations for the arbitrary angle 

to derive the equations for the vertical and horizontal case by changing our value of 𝜙. In the 
horizontal case, 𝜙 is 0° and in the vertical case 𝜙 is 90°. One thing to also note in the vertical case is 

that the phase shift by 90° in equation (6), sin  (𝜃 − 90°) can also be written as cos  (𝜃) by 
properties of sinusoidal waves. The same applications can be done to equation (11). Applying these 

special cases of 𝜙 gives us equations that are consistent with what we derived when looking at the two 
special cases individually.  

5. AVERAGING METHOD AND EFFECTIVE POTENTIAL 
 

From physics, it is understood that systems always tend to move towards positions of minimum potential 
energy. In a normal pendulum, we use this knowledge by analyzing minimum values of potential energy to 
determine stability points of a pendulum.  

Although, as previously mentioned, the inverted pendulum with a vibrating base has similar characteristics as 
a normal pendulum with smooth sinusoidal motion, the small oscillations caused by the vibrating base 
disrupt the smooth motion of the pendulum throughout each period and cause difficulty in analyzing 
stabilities. In order to deal with this complication we employ averaging techniques where we take an average 
over the period of rapid oscillation in order to treat motion as a single, smooth function. This helps us derive 
what is called an effective potential.  
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The effective potential is by definition, a mathematical expression that combines two, often opposing, forces 
into a single potential. In our case, it combines the normal smooth forces that are applied in a sinusoidal 
pendulum with the fast forces that are created by the oscillating base. What this allows us to do is to employ 
the same techniques we use in a normal pendulum to determine stability conditions.  

5.1  Calculation of Effective Potential  
 
 

In order to find the effective potential we begin with our differential equation found using the Euler 
Lagrange Equation and the Lagrangian 

  𝜃 − !!!!

!
cos 𝜔𝑡 cos 𝜃 − 𝜌 + !

!
sin 𝜃 = 0    (12) 

Since the motion of the pendulum consists of the “smooth” motion of the swinging pendulum and 

the “rapid” motion of the vibrating base, we separate the variable 𝜃 into two variables 

𝜃 𝑡 =   𝑋 𝑡 + 𝜉(𝑡)       (13) 

Where 𝑋 is the “smooth” motion and 𝜉 is the small, “rapid” motion. The differential equation can 
then be expanded into the first order approximations: 

𝑋 + 𝜉 = − 𝑔

𝑙
sin 𝑋 − 𝜉 𝑔

𝑙
cos 𝑋 + 𝑑0𝜔2

𝑙
cos 𝜔𝑡 cos 𝑋 − 𝜌 − 𝜉 𝑑0𝜔

2

𝑙
cos 𝜔𝑡 sin(𝑋 − 𝜌) (14) 

From here, we can equate the corresponding terms on the left and right sides of this equation. For 
the rapid motion, this is 

𝜉 = −𝜉 𝑔
𝑙
cos 𝑋 + 𝑑0𝜔2

𝑙
cos 𝜔𝑡 cos 𝑋 − 𝜌 − 𝜉 𝑑0𝜔

2

𝑙
cos 𝜔𝑡 sin(𝑋 − 𝜌)   (15) 

However, since we have the assumption that 𝜉 is very small compared to 𝜔, the first and last terms 

on the right side of this equation can be safely neglected due to the 𝜔! in the middle term, yielding 

 𝜉 = !!!!

!
cos 𝜔𝑡 cos 𝑋 − 𝜌        (16) 

We then solve for 𝜉 using integration, making use of the assumption that 𝑋, the “slow” motion, 
remains nearly constant over the period of the rapid motion, and that all constants of integration 
must be zero, because the rapid motion is sinusoidal centered at zero. Thus, we have 

𝜉 = − !!!!

!
cos 𝑋 − 𝜌 cos 𝜔𝑡 𝑑𝑡! = − !!

!
cos 𝑋 − 𝜌 cos 𝜔𝑡    (17) 

Returning to the separated differential equation, we can now remove 𝜉 and its equivalent 
expression found above to yield 

𝑋 = − !
!
sin 𝑋 − 𝜉 !

!
cos 𝑋 − 𝜉 !!!

!

!
cos 𝜔𝑡 sin(𝑋 − 𝜌)    (18) 

Now we apply the averaging technique, in which we take an average of each term over the period 
of the rapid movement. We can treat the slow motion as constant over this period, but the rapid 
movement, being sinusoidal, will average out to a constant value in the end. For now, we denote 
this averaging using bar notation: 
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𝑋 = − !
!
sın 𝑋 − 𝜉 !

!
cos 𝑋 − 𝜉 !!!

!

!
cos 𝜔𝑡 sın(𝑋 − 𝜌)     (19) 

We now substitute our solved expression for 𝜉 in the last term and take advantage of the fact that 

the middle term only contains a factor of 𝜉 and is therefore negligibly small. This yields 

𝑋 = − !
!
sin 𝑋 + !!!!!

!!
cos! 𝜔𝑡 cos(𝑋 − 𝜌)sın(𝑋 − 𝜌)    (20) 

This can be factored into differential form 

𝑋 = − 𝑔

𝑙
sin 𝑋 + 1

𝜔2
𝑑0𝜔2

𝑙
cos 𝜔𝑡 sin 𝑋 − 𝜌 𝑑

𝑑𝑋

𝑑0𝜔2

𝑙
cos 𝜔𝑡 sin 𝑋 − 𝜌  (21) 

which can be further reduced to 

𝑋 = − 𝑑

𝑑𝑋
− 𝑔

𝑙
cos 𝑋 − 1

2

𝑑0
!𝜔2

𝑙2
cos2 𝜔𝑡 sin2 𝑋 − 𝜌     (22) 

The averaging allows us to substitute cos! 𝜔𝑡 = !
!
, since this is the average value of the square of 

cosine over its period. Disregarding the abuse of notation, for simplicity in interpreting the results, 
we also return to using 𝜃 instead of 𝑋, and remove the averaging bars: 

𝜃 = − 𝑑

𝑑𝜃
− 𝑔

𝑙
cos 𝜃 − 1

4

      𝑑0
2𝜔2

𝑙2
sin2 𝜃 − 𝜌      (23) 

We have obtained an equation in the same form as the general equation of motion for physical 
systems, which is 

𝑥 = − 𝑑𝑈

𝑑𝑥
         (24) 

Where 𝑥 is the coordinate of the system and 𝑈 is the potential energy of the system. Thus, the 
equation we have arrived at via the averaging technique can be viewed as a sort of potential energy 
of the system, and the expression 

𝑈𝑒𝑓𝑓 = − 𝑔

𝑙
cos 𝜃 − 1

4

      𝑑0
2𝜔2

𝑙2
sin2 𝜃 − 𝜌       (25) 

is called the “effective potential” of the system.  

 

5.2  Significance of the Effective Potential  
 

 

It is imperative to note that this is not the actual potential energy of the pendulum, which depends 
only on gravity. Rather, because of the separation of variable and the averaging technique we 
employed, this equation simplifies the motion of the pendulum into a single smooth motion that 
acts as if its potential energy were the effective potential given by the above expression. If we 
substitute our previously found expression for 𝜉, we notice that  
 

𝑈!"" = − !
!
cos 𝜃 + !

!
𝜉!        (26) 
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Which represents the effective potential as a combination of the actual potential energy of the slow  
motion and the kinetic energy of the rapid motion. This gives us another way of viewing the 
potential energy as simply the energy that the system will have at any given point, as the vibration 
of the base results in a constant input of energy, as shown above, which is what creates the stability 
in the vertical position (for sufficient inputs of energy). 
 
 

6. STABILITY ANALYSIS 
Having arrived at the “effective potential” of the pendulum’s motion, we can now analyze the stability of 
the pendulum. Stability occurs at local minima of potential energy, including effective potential energy. 
In this case, we see that the effective potential 

𝑈!"" = −
𝑔
𝑙
cos 𝜃 −

𝑑!!𝜔!

4𝑙!
sin!(𝜃 − 𝜙) 

Is 2𝜋 periodic. When the frequency 𝜔 of the base vibrations is small, this function has one minimum 
near  𝜃 = 0, which means that the pendulum will be stable only near the straight down position. This is 
as expected, as the straight down position is stable for a pendulum whose base is not vibrating as well. At 
a certain frequency, which depends on the base angle 𝜙, a second stable point appears. For the horizontal 

or vertical cases, where 𝜙 = 0 or 𝜙 = 90°, respectively, this critical frequency is 

𝜔 >
2𝑔𝑙  
𝑑!

 

Unfortunately, the general expression for both the critical frequency and the angles of stability for an 
arbitrary angle 𝜙 is many pages long, as it involves symbolically solving a fourth order polynomial. 
However, since the equation for the effective potential is known, the stability points for any set of 
parameters can be easily determined by simply finding the minima of the above expression. For example, 

for a base angle of 𝜙 = 45°, with parameter values 𝜔 = 275.62 !"#
!"#

, 𝑙 = 0.187  𝑚, 𝑑! = 0.02  𝑚, 

the angle of stability is 𝜃 = 129°, or 39° above the horizontal. The graph of the effective potential for 
this case is shown below. 
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For the case of a vertical base, the second stability point is always at exactly 𝜃 = 180°, or straight up. In 
fact, there is a range of angles within which the pendulum will return to the straight up position if it is 
perturbed slightly. This “range of stability” is can be easily determined from the effective potential, as it is 
simply the range between the two maxima of the effective potential that appear at the minimum frequency. 
The range is given by 

cos!!
−2𝑔𝑙
𝑑!!𝜔!       ≤       𝜃!       ≤       2𝜋 − cos!!

−2𝑔𝑙
𝑑!!𝜔!  

where the two angles shown are the maxima. Note that the minimum frequency required for a second 
stability point can easily be found from these expressions, as the argument for inverse cosine must be 
between -1 and 1. 
 
For the horizontal case, a slightly different phenomenon is observed. The second stability point that appears 
at the minimum frequency is given by 

𝜃! = cos!!
2𝑔𝑙
𝑑!!𝜔!  

From this, it can be shown that the angle of stability begins at the straight downward position, then moves 
asymptotically towards the horizontal position as the frequency increases. Once again, the argument of the 
inverse cosine function demonstrates why the minimum frequency must be met in order for a second stable 
point to appear. 
 
From these two special cases, and the equation for effective potential for an arbitrary base angle, it can be 
shown that an arbitrary angle of the base produces a regime somewhere in between these two. In general, 
the “first” stable angle is not in the straight down position, but slightly offset by an amount that depends on 
the precise angle of the base. This offset is largest when 𝜙 = 45°. As the frequency passes the critical 

frequency, a second minima starts to appear, beginning with the larger values of 𝜙. Essentially, as the 
frequency increases, the angle of stability approaches the angle of the base asymptotically. For the special 

Stable equilibria 
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case where the base is perfectly vertical, this asymptotic dynamic disappears, and the angle of stability 
becomes exactly the same as the angle of the base.  
 

7 .  P H Y S I C A L  P E N D U L U M   
 

While the analysis presented thus far is very useful for determining qualitative results, particularly for the 
vertical case, the assumptions used are ideal and unrealistic. In particular, the model we used assumes that 
the pendulum has all of its mass concentrated at one point at its end. In reality, the pendulum used was 
closer to a rod with uniform density, although it must be noted that even this is an idealized assumption. To 
account for this “physical pendulum”, as opposed to the simple pendulum, the moment of inertia and center 
of mass must be taken into account. This is done by first considering the pendulum length to be half the 
length of the rod, as this is the distance to the center of mass of a uniformly distributed mass. Then, the 
rotational kinetic energy of the rod must be added to the Lagrangian to account for the moment of inertia. 
Thus, the Lagrangian becomes 

𝐿 =
7
12
𝑙𝜃! + 𝑑!𝜔! sin 𝜃 − 𝜙 cos 𝜔𝑡 + 𝑔 cos 𝜃 

From here, the same steps as described above are followed, as the only major difference is the coefficient. 
The final effective potential is now 

𝑈!"" = −
6
7
𝑔
𝑙
cos 𝜃 −

36
49
𝑑!!𝜔!

4𝑙!
sin!(𝜃 − 𝜙) 

This effective potential results in computational angles of stability slightly closer to the angles observed in the 
experiment than the simple pendulum model. However, there are still many assumptions made in this 
model, such as neglecting friction and air resistance, that result in experimental error that cannot be 
accounted for by simple error analysis. 

 

8 .  E X P E R I M E N T  
 

8.1  EQUIPTMENT  
 

Equipment Name Functionality 

Black and Decker JS515 Jigsaw The Jigsaw has a metal rod to act as the pendulum 

Zip Tie To tie the Jigsaw to have a solid frequency 

Clamp  Fix the pendulum at constant predetermined angles 

Casio EX-FH25 High Speed Digital 
Camera 

Absorb the motion of the vibrating pendulum 

Ruler Measure the length of the pendulum and the vibrating 
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base 

Micrometer Used to measure the diameter of the pendulum 

Protractor Used to measure the angle of the base 

IPhone 4 Used as the timer to calculate the frequncy 

 

8.2 PROCEDURES 
For our experiment, we shot eight videos in different angles. 
We have one in the horizontal angle, three in arbitrary angle, 
four in the vertical angle. The first two videos have a lower 
frequency because we shrink the zip tie after the second video. 
To measure the frequency, we used an iPhone timer to record 
the time.  

 

8.2 RESULTS  

By using fram-by-fram analysis and on-screen measurements, 
we are able to determine the. Our results are listed in the 
table below.   

 

Raw Data Table Measurement 

Length of Pendulum  (m) .187 

Diameter of Pendulum (m) 0.009525 

Amplitude  (m) 0.020 

Minimum 0.010 

Maximum 0.030 

Frequency (rad/s) 275.62 

Angle of Base 51° 

Momentum of Inertia 
𝐼 =

1
3
𝑚𝑙! 

 

When we compare our experimental results with our theoretical model, we have three essential 
models listed below.  

The theoretical model is just the simple pendulum, the experimental model is the Jigsaw that we 
used in the lab, and the corrected theoretical model is the pendulum incorporated with moment of 
inertia and center of mass. Note that there is still a significant discrepancy in the table. This 
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discrepancy is due to friction hinge and the physical pendulum is till idealized model. the corrected 
theoretical model doesn’t change much, but it does change in the right direction.  

                                

9 .  E r r o r  A n a l y s i s  
 

Few mathematical models are a perfect description of the real word. In order to solve difficult problems, 
assumptions must be made, and sometimes these assumptions are less than perfect. Many assumptions were 
made in modelling the motion of the pendulum for example, and the averaging technique, while very useful, 
isn’t perfect. These are some of the things that may have led to the difference in the expected theoretical 
results, and what was actually found through experimentation. In this section, however, we will calculate 
the error in our model due to measurements. 

9.1  Error in Measurements  

The absolute error for any measurement is defined by the unit of least count. This is the smallest 
measurement that can be accurately taken from the measuring device. For example, the absolute 
error for the length of pendulum and amplitude of base is .001 meters, because that is the smallest 
line on the meter stick that was used. The following table lists the errors that were considered in 
the model.  

 
 
N
o
t
e
 
t
h
at Angular Frequency (𝜔) cannot be directly measured. Instead, the variable T* is introduced and 
defined as the period of time required for the pendulum’s base to make 60 oscillations.  
 

9.2  Error Propagation  

Since there may have been some error in three of the calculated values that are present in the 
relevant equations, naturally there will be some error propagation. In order to find how much 
error might be due to error in measurements, the Variance Formula can be utilized. 

 Measured Value Absolute Error Percent Error 

Length of Pendulum 
(𝑙) 

𝑙 = 0.187 meters δ𝑙 =  0.001 meters .54% 

Amplitude of Base 
(d˳) 

d˳ = 0.020 meters δd˳ =  0.001 meters 5.0% 

Period for 60 
Oscillations (T*) 

T* = 1.35 seconds δT* =  0.05 seconds 3.7% 
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𝛿𝜃 = !"
!"
𝛿𝑙

!
+ !"

!!∗
𝛿𝑇∗

!
+ !"

!!!
𝛿𝑑!

!
   (27) 

By following the process of finding stability points described in previous sections of this paper, and 

by making the following substitution 𝜔 = 2𝜋 ∗ !"
!∗

 , we can find the stability angle for the horizontal 

pendulum (ϕ = 0) according to the following equation. 
 

𝜃!(𝑙,𝑑!,𝜔) = cos!!( !
!"##!!

   !!
∗!

!!!
)    (28) 

 
And the critical angles, or the range of stability, can be found for the vertical pendulum according 
to the following formula. 
 

𝜃!(𝑙,𝑑!,𝜔) = cos!!(− !
!"##!!

   !!
∗!

!!!
)          (29) 

 
Notice that the partial derivatives of (28) and (29) will be the same, except for the sign. But the 
Variance Formula takes the square of each of these terms anyways. This means that the Absolute 
Error analysis will be the same for each of these equations. If we define:  

 

𝛼 = − !
!"##!!

= −1.38  𝑥  10!!    (30) 

 
Then we obtain the following partial derivatives (considering sign to be positive): 

 
!"
!"
= !!∗!

!!! !! !"!∗!

!!
!

!
  

              
!"
!!∗

= !!"!∗

!!! !! !"!∗!

!!
!

!
  

                                !"
!!!

= !!"!∗!

!!! !! !"!∗!

!!
!

!
  

 (31, 32, 33) 

 
Now we can plug (31), (32) and (33) into the Variance Formula (27) along with the values in 

Figure 1: 

𝛿𝜃 𝑙,𝑑!,𝜔 = 0.633 ∗ 0.001 ! + 0.176 ∗ 0.05 ! + 11.84 ∗ .001 !  (34) 
 

𝛿𝜃 = 0.0148  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 =   . 86°     (35) 
 

This represents the amount of error that may have occurred doing to lack of accuracy in 
measurements. This means, the model more accurately predicts the following stability and critical 
angles. 

 
Critical Angles for the Vertical Pendulum: θc = ± 97 ± 0.86° 

Stability Angle for the Horizontal Pendulum: θs = 83 ± 0.86 °  

 

9.3  Conclusion 
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After analysis, it is clear that there is some error in the values that the model predicted due to 
possible error in the values that were plugged into the model. However, this calculated theoretical 
error is quite small compared to the experimental error. This means the difference between the 
expected and observed results must arise from elsewhere. 
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