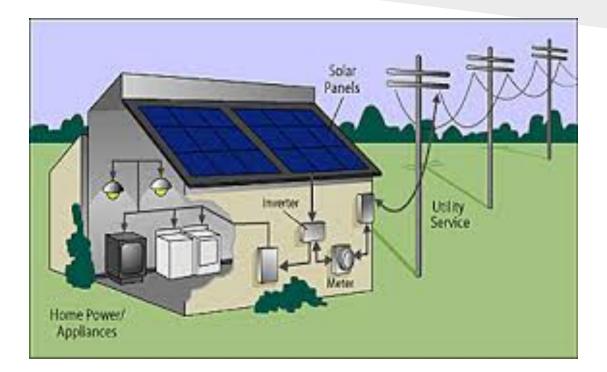

Energy Flows in Electric Grids


Ruolin Fan Stephanie Greiner Ahmed Jasim Weide Peng Chihwei Yang Mentor: Steven Rosenthal

How Electricity Flows To Its Users

Source: Energy Information Administration.

Application

Background

- Producers
 - \circ power plants
 - \circ self producers

- Consumers
 - Positive or negative
 - Amount varies

Background

• Real Power = I^2R

- Where I = current & R = resistance
- Energy that can be used to do work

• Reactive Power = I^2X

- Where I = current & X = reactance
- Reactive power flow is needed in an alternating-current transmission system to support the transfer of real power over the network.

Motivation

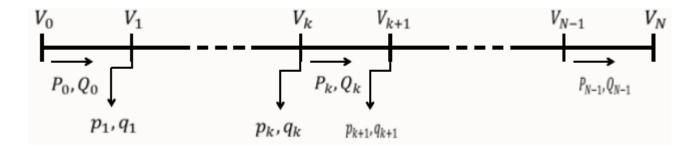
• Maximize production per length

- Concerned about power flow
- Situation: consumers and producers

• Create low-parametric ODE model of a feeder

Motivation-the Problem

• Theoretical vs. Practical


- power set to constant in the paper
- power consumption varies

• Add randomness into the system

- \circ stochastic process
- perturb both real & reactive power

Developing the Model

Diagram and notations below is the general idea for the energy flows in electrical grids.

DistFlow Equations

$$P_{k+1} - P_k = p_k - r_k \frac{P_k^2 + Q_k^2}{v_k^2}$$

$$Q_{k+1} - Q_k = q_k - x_k \frac{P_k^2 + Q_k^2}{v_k^2}$$

$$v_{k+1}^2 - v_k^2 = -2(r_k P_k + x_k Q_k) - (r_k^2 + x_k^2) \frac{P_k^2 + Q_k^2}{v_k^2}$$

k = 0, 1, ..., N -1 enumerates buses of the feeder (k = consumer)

Pk, real power flowing from bus k to bus k + 1. Qk, reactive power flowing from bus k to bus k + 1 pk, qk are net consumption for consumers

rk, xk represent the resistance and inductance of the line element connecting k and k + 1 buses with Boundary Conditions: $P_{N+1} = Q_{N+1} = 0$, $v_0 = 1$

Homogenization

- 1. Large number of consumers (N >> 1)
- 2. Continuous form with limit $N \to \infty$
- 3. To simplify, we reduce the parameter
 - set rk / xk to constant. rk = r(lk) / L and xk = x(lk) / L,
 - * where L is the total line of feeder line
 - * lk length of line from bus k to bus k + 1
- 4. Relating differences to derivatives, F_{k+1} $F_k \approx F'(z) l_k/L$

DistFlow ODEs (B.V.P.)

$$\frac{d}{dz} \left(\begin{array}{c} P \\ Q \\ v \end{array} \right) = \left(\begin{array}{c} p - r \frac{P^2 + Q^2}{v^2} \\ q - x \frac{P^2 + Q^2}{v^2} \\ - \frac{rP + xQ}{v} \end{array} \right)$$

The DistFlow ODEs with the following mixed conditions

$$v_0 = 1, P(L) = Q(L) = 0$$

By Solving this ODE's for known length of feeder line , one can evaluate real and reactive power and voltage along the given line.

Re-Scaling and Simplification of The B.V.P.

Assuming that p is constant, and changing from the flow densities P, Q, voltage, v, and position along the feeder line, z, to the new variables

A new variable s, this rescaling change the position of the line and the end of line in terms of s it will then show the power at the beginning.

DistFlow ODEs v.s. Rescale DistFlow ODEs (unit)

Rescale DistFlow ODEs

 \rightarrow Calculate the initial value problems (dimensionless)

DistFlow ODEs

 \rightarrow Calculate the boundary value problems (not dimensionless)

Dimensionless

$$ho(s) = \sqrt{r/|p|} * P(z)/v(L)$$

Units of r, p, P, and v:

$$\begin{split} [r] &= \Omega \\ [p] &= v^2/\Omega \\ [P] &= v^2/\Omega \\ [v] &= V \end{split} \quad \begin{bmatrix} \rho \end{bmatrix} = \sqrt{[r]/[p]} * [P]/[v] \\ \sqrt{\Omega/[v^2/\Omega]} * (v^2/\Omega)/V = \Omega/V * V/\Omega = 1 \end{split}$$

7 & **v** are also equal to 1. They are unitless \rightarrow dimensionless variable.

After Rescaling

we get the initial value problem equations as below:

$$-\frac{d}{ds} \begin{pmatrix} \rho \\ \tau \\ \upsilon \end{pmatrix} = \begin{pmatrix} \operatorname{sign}(p) - \frac{\rho^2 + \tau^2}{\upsilon^2} \\ A - B \frac{\rho^2 + \tau^2}{\upsilon^2} \\ - \frac{\rho + B\tau}{\upsilon} \end{pmatrix}$$

initial conditions

$$\upsilon(0) = 1, \varrho(0) = \tau(0) = 0$$

Rescaled Formulation

When q is constant, the rescaled DistFlow ODEs defines initial value problem stated in only one end of the s interval.

We solve it forward in the rescaled time, $s: o \to s_*$, (stopping point) then arriving at $\varrho(s_*), \tau(s_*)$ and $\upsilon(s_*)$ n recomputes L, v, P and Q.

$$L = \frac{s_*}{\upsilon(s_*)\sqrt{|p|r}}$$

$$v(L) = \frac{1}{v(s_*)}$$

$$P(0) = \frac{\varrho(s_*)\sqrt{|p|/r}}{\upsilon(s_*)}$$

$$Q(0) = \frac{\tau(s_*)\sqrt{|p|/r}}{\upsilon(s_*)}$$

Compare DistFlow ODEs & Rescale DistFlow ODEs

DistFlow ODEs

$$\frac{d}{dz} \begin{pmatrix} P \\ Q \\ v \end{pmatrix} = \begin{pmatrix} p - r \frac{P^2 + Q^2}{v^2} \\ q - x \frac{P^2 + Q^2}{v^2} \\ - \frac{rP + xQ}{v} \end{pmatrix} \quad v_0 = 1, P(L) = Q(L) = 0$$

Rescale DistFlow ODEs Eqs. (1) (2) allow efficient computation of the original mixed problem(DistFlow ODEs) for different value of the feeder length L by simply scanning s_*

$$-\frac{d}{ds} \begin{pmatrix} \rho \\ \tau \\ \upsilon \end{pmatrix} = \begin{pmatrix} \operatorname{sign}(p) - \frac{\rho^2 + \tau^2}{\upsilon^2} \\ A - B \frac{\rho^2 + \tau^2}{\upsilon^2} \\ - \frac{\rho + B \tau}{\upsilon} \end{pmatrix} \qquad \upsilon(0) = 1, \varrho(0) = \tau(0) = 0$$

$$L = \frac{s_*}{\upsilon(s_*)\sqrt{|p|r}}$$

P(0)

$$v(L) = \frac{1}{v(s_*)}$$

$$=\frac{\varrho(s_*)\sqrt{|p|/r}}{\upsilon(s_*)}\qquad \qquad Q(0)=\frac{\tau(s_*)}{\tau(s_*)}$$

(2)

(1)

Case Studies

Set r =x=1, q=p/2

Case 1: standard case, p and q are negative along the feeder -- consuming

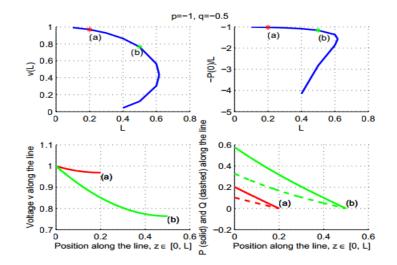


Fig. 1. The case of uniform distributed consumption of real and reactive powers.

Case Studies

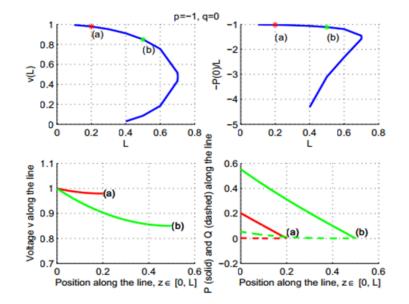


Fig. 2. The case of uniform consumption and zero-power factor reactive control.

Distributed Generation Graph

Case 2: when p and q are positive along the feeder -producing

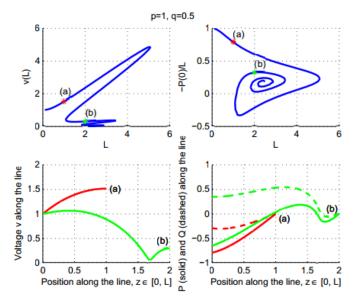


Fig. 4. The case of uniformly distributed and comparable generation of real and reactive powers

Previous Results

•A desirable system, in which the voltage along the line is satisfactory

•Undesirable scenario, in which the system experiences a power failure

The Plan From Here

Goal: telling the story of what happens when all consumers are all producers but also not everyone being the same adding randomness only perturbing the real component

-Can do from here:

- 1. Testing the results from previous studies.
- 2. Cases of a large amount of individual producers and their effect on the grid
- 3. Test real and reactive power independently and perturb them independently-Add randomness in the system (stochastic process)

Any questions?

Thank you!