Olfactory Search of Moths in a City Grid

Cristina Retamoza
Craig Thompson Laura Nakolan Noah Hammer Steven Smith

The Paper:
 Olfactory Search at
 High Reynold's Number
 By: Eugene Balkovsky and Boris I. Shraiman

Olfactory search at high Reynold's number

Search for chemical

- Locating the source of odor in a turbulent environment

Animal behavior

Difficulties with Turbulent Flows

- Turbulent flows consider variations at all scales
- Large scale and small scale eddies mix
- Diffusion
- Fluctuating structure of odor plume
- Odor is not always present or does not point towards source
- Concentration decreases as it moves away from the source and time between detecting odor increases.

The Odor Plume

- Inhomogeneity of velocity causes stretching of the plume and diffusion, which decays the odor
- The probability of an odor patch to survive for time \dagger is:
*(vrms is the root-mean -square of the velocity)

Moth's Strategy

- Because the female moth produces so few molecules, there is no gradient for the moth to follow
- Counterturning pattern
- Casting-wider crosswind excursion
- Zigzagging—upwind progression

Parameters

- V - Mean velocity of the wind, is set by atmospheric conditions and doesn'† change.
- Odor molecules move in a random walk superimposed on the wind.
- L - height above the ground, at scales larger than L, the motion is Brownian with a diffusion coefficient estimated at $L V_{\text {rms }}$
- $V_{\text {rms }}$ - root mean square of the random walk fluctuations.

2D Model

- An odor patch that starts at $(0,0)$ is advected to $(-1,1),(0,1)$ or $(1,1)$
- $(-1,1)$ can move to $(-2,2)$ $(-1,2)$ or $(0,2)$, etc
- Probability to moving left, forward or right is equal

Statistically unlikely

2D Model

Stationary distribution of the patches

$$
p(r)=\frac{1}{\sqrt{4 \pi D y}} \exp \left[-\frac{x^{2}}{4 D y}\right]
$$

r is the point (x, y)
D is $\left(\mathrm{p}_{\mathrm{R}}+\mathrm{p}_{\mathrm{L}}\right) / 2$
p_{R} is the probability of moving to the right
p_{L} is the probability of moving to the left

Rules for the Model

- Moth starts moving once it gets first whiff of odor
- Each time step, moth can move once
- 1 lattice step along the x or y axis

- Moth does not move downwind

Strategy 1

- Moth waits at a sight until it gets an odor patch
- Moves to the site from which the patch came
- 100% probability of finding source, but.... Not most efficient

Strategy 1

The Probability Distribution Function (PDF) of the "passive search" time is:

$$
\rho(t)=\frac{1}{\sqrt{2 \pi \Delta}} \exp \left\{-\frac{\left(t-t_{s}\right)^{2}}{2 \Delta}\right\}
$$

Where

$$
t_{s} \propto y_{0}^{\frac{3}{2}} \exp \left(\frac{\sqrt{x_{0}^{2}}}{4 D y_{0}}\right), \Delta \propto y_{0}^{2} \exp \left(\frac{x_{0}^{2}}{2 D y_{0}}\right)
$$

For $x_{0} \geq\left(D y_{0}\right)^{\frac{1}{2}}$
(outside parabolic region)

Search time grows faster than exponentially
Δ also increases with x_{0}
(x_{0}, y_{0}) is the initial position of the moth t_{s} is the typical search time
Δ is the PDF variance

When search time is large, $\left(t \gg t_{s}\right)$, moth gets "trapped" outside parabolic region

Strategy 2

- Moth moves in casting motion until scent patch is located.
- Moth moves a unit towards direction of located scent and then begins the zigzagging motion until next scent patch is located.

- Cone of possible scent locations collapses as each patch is detected and a movement towards the scent is made.
- Frequency of scent patch detection increases as moth moves closer to source.
- Once detection is frequent enough, moth can take direct path toward source.

Strategy 2

- The PDF of the "active search" time is:

$$
\rho(t)=\frac{1}{4 \sqrt{\pi b t}} \exp \left(-\frac{\left(t-t_{\mathrm{s}}\right)^{2}}{2 b t}\right)\left(1+\frac{t_{\mathrm{s}}}{t}\right),
$$

- Net upwind component of moths velocity is largest immediately after scent detection and decreases with time as $\frac{1}{\sqrt{t}}$.
- Typical search time is: $t_{\mathrm{s}}=a y_{0}^{5 / 4}$.
- Typical search time is independent of initial crosswind position.
- With upwind movement, there is a high probability that next patch will be encountered within $|x| \leqslant(D y)^{1 / 2}$.

Strategy 3

- Modification of strategy 2.
- PDF for search time is same as strategy 2.

$$
\rho(t)=\frac{1}{4 \sqrt{\pi b t}} \exp \left(-\frac{\left(t-t_{\mathrm{s}}\right)^{2}}{2 b t}\right)\left(1+\frac{t_{\mathrm{s}}}{t}\right)
$$

- Difference from strategy 2 is that some search points can be omitted.

R
$\left(x-x_{i}\right)^{2} \leq 4 D\left(y_{i}-y\right) \ln \left(\frac{1}{p_{\mathrm{c}} \sqrt{4 \pi D\left(y_{i}-y\right)}}\right)$,

- Typical search time is: $t_{s}=a_{2} y_{0}^{7 / 6}$
- Drawback is small possibility to lose the plume.
b

Results

- Passive search algorithms are inefficient.
- Cross wind motion is essential.

Our Project

Olfactory Search in Turbulent Flow in a City

- Analysis of how odor distributes given the consistent obstruction by large objects (i.e. buildings).
- Formulation of an analytical model for the distribution of odor patches in a city.
- Collection of data based on a Monte Carlo algorithm for comparison with analytical model.
- Construction of search algorithm for "bomb sniffing" robot.

The Setup

- Assumption that the city is a perfect, square grid.
- Wind Velocity is a given parameter
- Every time interval, an odor patch is released from the source. It's velocity depends on which wind velocity component is affecting it.

$v=$ Wind Velocity

The Setup

- Assumption that the city is a perfect, square grid.
- Wind Velocity is a given parameter.
- Every time interval, an odor patch is released from the source. It's velocity depends on which wind velocity component is affecting it.
- At each intersection the probability that the smell patch moves in a given direction is weighted by the components of the wind velocity vector.
- The buildings are very tall, and the wind flow at street level is not affected by the turbulent flow above the roof-tops in most cases.
- Given a robot that can detect odor and wind velocity, what is the best search pattern? How can Nature's (the moth's) search pattern be adapted to the environment?

Questions?

