

Smallpox Epidemics

Graphical Sensitivity Analysis for an Epidemiological Model

Michael Jardini, Xiaosi Ma, Marvin O'Ketch Mentor: Jeffrey Hyman

March 25, 2013

= nar

Motivation	Model	Analysis	Conclusions

Modeling spread of diseases

- Population Models
- Epidemic Aversion

Motivation	Model	Analysis	Conclusions

$SIR \, \, \mathrm{Model}$

Basic Model for Population Epidemiology

$$\frac{dS}{dt} = -\beta IS$$
$$\frac{dI}{dt} = \beta IS - \nu I$$
$$\frac{dR}{dt} = \nu I$$

Motivation	Model	Analysis	Conclusions

$SIR \,\, {\rm Model}$

Basic Model for Population Epidemiology

$$\frac{dS}{dt} = -\beta IS$$
$$\frac{dI}{dt} = \beta IS - \nu I$$
$$\frac{dR}{dt} = \nu I$$

► Each variable *S*, *I*, *R* is a percentage of the total population, and thus are non-dimensional.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Motivation	Model	Analysis	Conclusions

$SIR \,\, {\rm Model}$

Basic Model for Population Epidemiology

$$\frac{dS}{dt} = -\beta IS$$
$$\frac{dI}{dt} = \beta IS - \nu I$$
$$\frac{dR}{dt} = \nu I$$

► Each variable *S*, *I*, *R* is a percentage of the total population, and thus are non-dimensional.

• The only stable solution is trivial (nobody is sick).

Motivation	Model	Analysis	Conclusions

Sensitivity Analysis

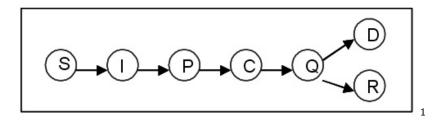
Goal

To evaluate sensitivy of a model to the parameters describing it, i.e. to determine the amount that the entire model changes when each parameter is altered.

Used in models for which traditional analysis is impossible or inconclusive.

Motivation	Model	Analysis	Conclusions

Smallpox Epidemic


Stages of Smallpox

- 1. Incubation (12-14 days after infection) not contagious
- 2. Prodrome (2-4 days) early symptoms and negligible infectivity
- 3. Fulminant- rashes appear and the patient is infectious within the next 7-10 days

Scabs fall off after 3 weeks but are still infectious.

Motivation	Model	Analysis	Conclusions

Smallpox Epidemic

¹Chen, Li-Chiou, et al. "Aligning simulation models of smallpox outbreaks." Intelligence and Security Informatics. Springer Berlin Heidelberg, 2004. 1-16.

Motivation	Model	Analysis	Conclusions

Smallpox Epidemic

$$\frac{dS}{dt} = -\beta SC$$
$$\frac{dI}{dt} = \beta SC - \sigma I$$
$$\frac{dP}{dt} = \sigma I - \alpha P$$
$$\frac{dC}{dt} = \alpha P - \gamma C$$

$$\frac{dQ}{dt} = \gamma C - \nu Q$$
$$\frac{dD}{dt} = \lambda \nu Q$$
$$\frac{dR}{dt} = (1 - \lambda)\nu Q$$

- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > りんぐ

Motivation	Model	Analysis	Conclusions

Variables and Parameters

Eight Variables

- S Susceptible
- I Incubating
- P Prodrome
- ${\boldsymbol{C}}$ Contagious
- Q Quarantined
- D Dead
- R Recovered
- t Time

One Constant N - Total Population

Note:

N = S + I + P + C + Q + D + R

Motivation	Model	Analysis	Conclusions

Variables and Parameters

Six Parameters

- β Rate of Transmission
- σ Frequency of Incubation State
- α Frequency of Prodrome State
- γ Rate of Quarantine
- ν Frequency of the Course of the Disease
- λ Death Rate

Motivation	Model	Analysis	Conclusions

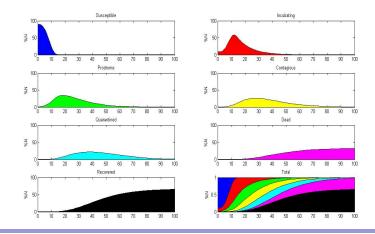
Numeric Approximation of Solutions

System of ODEs numerically integrated using Matlab from t = 0 to t = 100.

御 と く き と く き と …

Initial Conditions S = 0.9 I = 0.1All other state vectors zero.

I.E., 10% of population gets infected.

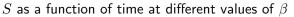

 $\lambda = .33$

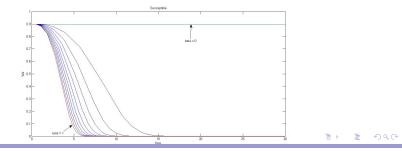
All other parameters have value of 0.1

Motivation	Model	Analysis	Conclusions

Numeric Approximation of Solutions

System of ODEs numerically integrated using Matlab from t = 0 to t = 100.

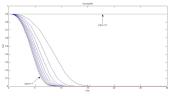

Motivation	Model	Analysis	Conclusions

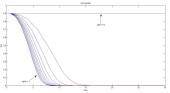

Introducing Graphical Analysis

Solutions of system as one parameter is changed, all others held constant.

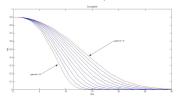
Example

Plots of S, integrated from t = 0 to t = 30, as particular parameters are iterated from 0 to 1 by an interval of 0.1.

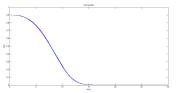


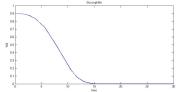

Motivation	Model	Analysis	Conclusions

Introducing Graphical Analysis


S as a function of time at different values of σ

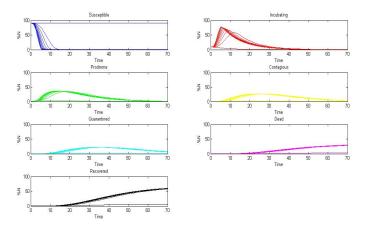
S as a function of time at different values of $\boldsymbol{\alpha}$


S as a function of time at different values of γ


Motivation	Model	Analysis	Conclusions

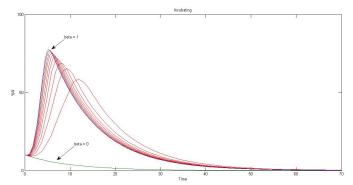
Introducing Graphical Analysis

S as a function of time at different values of ν

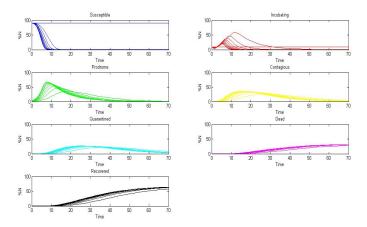

S as a function of time at different values of λ

- - E - b

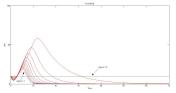
Motivation	Model	Analysis	Conclusions


Change in System as β Varies, integrated from t = 0 to t = 70.

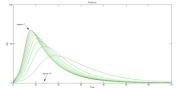
- * ロ > * @ > * 注 > * 注 > 「注 = うへで


Motivation	Model	Analysis	Conclusions

I as a function of time at different values of β

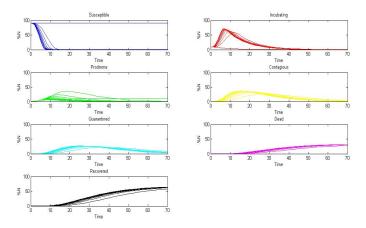

Motivation	Model	Analysis	Conclusions

Change in System as σ Varies, integrated from t = 0 to t = 70.



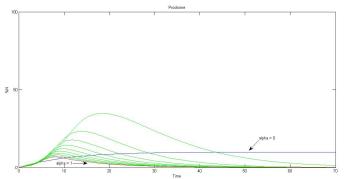
Motivation	Model	Analysis	Conclusions

I as a function of time at different values of σ

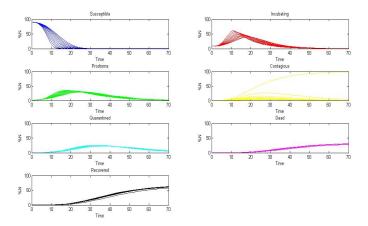

P as a function of time at different values of σ

- ▲日を▲聞を▲聞を▲聞を、聞、今への

Motivation	Model	Analysis	Conclusions

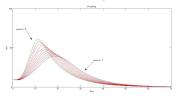

Change in System as α Varies, integrated from t = 0 to t = 70.

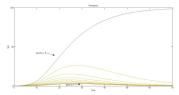
- * ロ ト * @ ト * 差 ト * 差 * うえぐ


P as a function of time at different values of $\boldsymbol{\alpha}$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ の�?

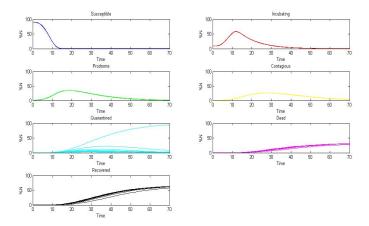
Motivation	Model	Analysis	Conclusions


Change in System as γ Varies, integrated from t = 0 to t = 70.


- * ロ > * @ > * 注 > * 注 > … 注 … の < @

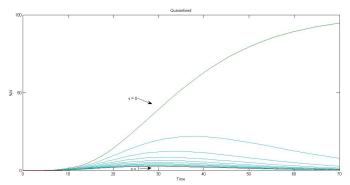
Motivation	Model	Analysis	Conclusions

I as a function of time at different values of γ

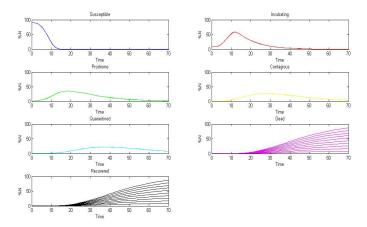


C as a function of time at different values of γ

Motivation	Model	Analysis	Conclusions


Change in System as ν Varies, integrated from t = 0 to t = 70.

- * ロ > * @ > * 画 > * 画 > * 画 * の < @ >



Q as a function of time at different values of ν

Motivation	Model	Analysis	Conclusions

Change in System as λ Varies, integrated from t = 0 to t = 70.

Motivation	Model	Analysis	Conclusions

Summary

- Picked smallpox model and determined factors affecting transmission.
- Developed a code to simulate model and solve numerically.
- All variables sensitive to changes in α , γ , σ , and β .
- γ has an effect opposite those of β , σ , and α .
- Only Q, D, R sensitive to ν .
- Only D and R are sensitive to λ .

Motivation	Model	Analysis	Conclusions

Summary

What does it mean?

- The disease spreads slowest when rates of transmission are low, and when periods of illness are quick.
- Lots of quarantine can significantly slow the spread of infection.
- Progress of the illness after quarantine is inconsequential to the spread of the disease.

Motivation	Model	Analysis	Conclusions

Future Work

- ► Non-dimensionalization of ODEs: removing time parameter.
- Forward Sensitivity Analysis: Analytical bounds on state vectors with respect to parameter perturbations.

$$\eta = \frac{\partial y}{\partial p} \frac{p}{y}$$