Bubble Dynamics in a Vibrating Liquid

By: James Wymer, Jaggar Henzerling, Aaron Kilgallon, Michael McIntire, Mohammed Ghallab

Background

In the early 1960's a series of rocket failures plagued leading space industries. The problems were caused when floating fuel indicators inexplicably sank and caused premature stage separation of the rockets.

Observation

- Bubbles can sink in a vibrating liquid
- The vibration can come from the liquid being directly agitated or agitation of its container
- Fluid density and pressure, bubble depth and amount of vibration are all key factors

Problem

- Induced or Added mass was first proposed by Friedrich Bessel in 1828
- Vertical oscillations increase the induced mass that affects the bubble
- Phenomenon of induced mass creates a changing effective gravitational potential

Model

- Concepts
- Archimedes' principle
- buoyancy
- Laplace pressure
- pressure difference between bubble inside and outside
- Friction
- drag on bubble's motion
- Induced mass

Archimedes' Principle

- The buoyant force arises from a mass displacing fluid
- Depends on the density and volume displaced
- $F=\rho V g$
- Archimedes postulated that the difference in pressure between an upper and lower face of an object caused this effect

Laplace Pressure

- Is the pressure difference between two sides of a curved surface
- Arises from surface tension Y of the interface
- For spheres, Young-Laplace equation reduces to the second equation
- Smaller droplets have nonnegligible extra pressure
- Commonly used for air bubbles in water or oil bubbles in water

$$
\begin{aligned}
& \Delta P \equiv P_{\text {inside }}-P_{\text {outside }}=\gamma\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\
& \Delta P=\frac{2 \gamma}{R}
\end{aligned}
$$

Friction

- Also known as drag or fluid resistance
- Described mathematically by the drag equation
- Depends on the velocity of the object and fluid properties
- Drag coefficient C is dimensionless and describes drag in fluids

$$
F_{D}=\frac{1}{2} \rho v^{2} C_{D} A
$$

Induced Mass

- Various changes in velocity affect the Kinetic energy
- The attached mass determines the work done to change the kinetic energy

$$
\begin{aligned}
T & =\frac{\rho}{2} \int_{V}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right) d V \\
T & =\rho \frac{1}{2} U^{2}
\end{aligned}
$$

Equations from CR82.010

Induced Mass

- Introduce I which represent how the volume of the sphere changes with velocity
- Attached mass is equal to I*density, so attached mass is $1 / 2 \mathrm{~m}$ (displaced fluid)

$$
\left\lvert\,=\frac{2}{3} \pi R^{3}\right.
$$

Equation from CR82.010

Induced Mass Concept

Model

- Assumptions
- Spherical bubbles
- Incompressible liquid (div of velocity is zero)
- Container is open on top
- Bubble volume changes are insignificant (quasistatic)
- Ideal pressure conditions (too much and no oscillations, too little and cavitation occurs)

Model

- Parameters
- Total water depth - H
- Bubble depth - x
- Bubble radius - r
- Oscillation amplitude - A
- Oscillation frequency - ω
- Time duration-t

Bubble Volume

Assume the bubble to be isothermal:
The Ideal Gas Law implies that $P(t) V(t)=P(0) V(0)$
Fluid oscillations implies the pressure is:

$$
P(t)=P(0)+\rho x\left(g+A \omega^{2} \sin \omega t\right)
$$

The final result for the volume of the bubble is:

$$
V_{b}=\frac{P_{e} V_{b 0}}{P_{e}+\rho x\left(g+A \omega^{2} \sin \omega t\right)}
$$

Model

- Combining these varying functions into a general equation results in this differential equation of motion for the bubble:

$$
\begin{aligned}
& \quad\left(m+m_{0}\right) \ddot{x}+\dot{m}_{0} \dot{x}=-F(\dot{x})+\left(m-\rho V_{b}\right)\left(A \omega^{2} \sin \omega t+g\right) \\
& \text { - Induced mass } m_{0} \text {, Mass Variation Friction, }
\end{aligned}
$$

Model

- Combining these varying functions into a general equation results in this differential equation of motion for the bubble:

Drag force, buoyancy term, oscillating fluid term.

Drag Force:

$$
F(\dot{x})=4 \rho R^{2} \Psi(\operatorname{Re}) \dot{x}^{2} \operatorname{sgn} \dot{x} \quad \operatorname{Re}=2 \rho R V / \mu \longrightarrow \text { Neynolds }
$$

Model - Separation of Variables

- Method of Separation of Variables
- Harmonics of these types of oscillations imply that one can assume that the solutions are of the form: $x(t, \tau)=X(t)+\Psi(\tau)$
- $X(t)$ is the 'slow' solution
- $\Psi(\tau)$ is the 'fast' solution

Time Average Position of the Bubble

Average Position of Bubble:

$$
\langle x(t, \tau)\rangle=\langle X(t)\rangle+\langle\Psi(\tau)\rangle
$$

Slow
Fast

Since $\Psi(\tau)$ is periodic its average is zero

Therefore the average position of the bubble is described by the changes that take place slowly in time

Slow Solution

Condition for bubble sinking is:

$$
\gamma \cdot \omega^{2} \frac{X}{H_{0}} \frac{1}{2}\left(1-\frac{2}{3} \frac{\theta \frac{A^{2}}{R_{0}^{2}}}{2\left(1+\sqrt{1+\theta \frac{A^{2}}{R_{0}^{2}}}\right)+\theta \frac{A^{2}}{R_{0}^{2}}}\right)>1
$$

Velocity of Bubble

- Acceleration of bubble is relatively small
- Results in 3 cases
- Bubble sinks

Velocity of Bubble

Conclusion

- Bubbles in vibrating fluids will sink given certain circumstances
- Dependent factors
- Bubble depth
- Vibration amplitude
- Cause
- Induced mass overcomes buoyancy

Future Steps

- Create computer model simulating bubble effects
- Determine quantifiable difference between liquid being agitated by vibrating container and pressure waves
- Attempt to determine a method to prevent sinking of bubbles (thermal excitation, focused ultrasound)

Sources

- Brennen, C. E., comp. "A Review of Added Mass and Fluid Inertial Forces." (1982): Naval Civil Engineering Laboratory. Web. 8 Mar. 2014. http://authors.library.caltech. edu/233/1/BRE052.pdf
- Falkovich, G. Fluid Mechanics: A Short Course for Physicists. Cambridge:

Cambridge UP, 2011. Print.

- Techet, A. "Object Impact on the Free Surface and Added Mass Effect." (2005): Massachusetts Institute of Technology. Web. 8 Mar. 2014. http://web.mit.edu/2. 016/www/labs/L01_Added_Mass_050915.pdf
- V.S. Sorokin, "Motion of a Gas Bubble in Fluid Under Vibration," (201): Springer. Web.

Model

- Derivations

$$
X_{0}=\frac{2 H_{0}}{\gamma \cdot \omega^{2}} \cdot \frac{2\left(1+\sqrt{1+\theta \frac{A^{2}}{R_{0}^{2}}}\right)+\theta \frac{A^{2}}{R_{0}^{2}}}{2\left(1+\sqrt{1+\theta \frac{A^{2}}{R_{0}^{2}}}\right)+\frac{\theta}{3} \frac{A^{2}}{R_{0}^{2}}}
$$

