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Introduction 

 

Power grids are vast complex networks that make up a large part of an infrastructure.  It is 

crucial to consumers to have a reliable power grid that is also as efficient as possible.  Many 

precautions are taken, and operators hired to maintain reliability, however three fourths of power 

outages are caused by operator errors.  These errors can be avoided by automatic adjustments 

based on models of the grid system.  The model explored is ensuring generator synchronization 

within the system.  

 

 

Synchronization  

 

Synchronization is important in that it ensures quality, reliability as well as optimizing efficiency 

within the system.  By synchronizing generators within a grid, it ensures no destructive 

interference occurs.  This then in causes a more consistent energy supply to the consumers since 

all generators are working in unison.  Finally, not only will the grid not have destructive 

interference, constructive interference will occur which increases the total power the grid can 

produce which optimizes the grid. 

It is first important to define what a synchronized state is.  In a system containing   generators, 

synchronization is defined by: 
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Where          represents the rotational position of the ith generator and dot represents a time 

derivative.  This definition of synchronization is important as it ensures the properties discussed 

above about the system.   

The power grid can then be broken down into two pieces, the generators and the transmission 

lines between generators.  This characterization can fully define the grid as it allows us to study 

both the dynamics of each generator individually, as well as the effects it causes on the other 

generators (with the alterations caused by transmission lines). 

Each individual generator follows the law of conservation of angular momentum.  This equation 

describes the motion of the generators at the most basic way possible: 

 

  
    

   
         

 

Where    is the moment of inertia of the ith generator and     and     are mechanical torque 

created and electrical torque out of the ith generator respectively.  This equation can be 

converted into an energy balance by multiplying both sides by   , the angular frequency of the 

ith generator.  It can then be rewritten to: 

 

    

    

   
         



   

By recognizing that 
    

 

 
 is the kinetic energy of the system and assuming that the system is 

operating very close to synchronization where    is the reference frequency we can rewrite a 

final time to: 

   

  

    

   
         

 

Where     is the kinetic energy of the ith generator.  This equation gives some initial insight into 

the dynamics of the system.  When the system is in equilibrium, power created equals power 

demanded, and  ̇  is close to    it is sufficient to assume we are in a synchronous state.  

However if     becomes too large, the angular momentum of generator must increase in order to 

compensate until     returns to an equilibrium state. 

 

We would like to focus on the short-term stability of these power network systems. To begin, we 

linearize the swing equation given earlier to: 
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To do this we make some assumptions including that the effect the mechanical power has on the 

phase is negligible. The first term on the right corresponds to the droop equation, a common 

equation in power control. The second term follows a damping equation. The third term comes 

from the structure of the network and the interactivity between the generators.  

 From here, we take this series of equations and simplify them down to a coupled set of 2n 

equations: 
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Where the matrix P is a zero-sum matrix that is composed from the third term in the linearized 

equation and some leftover constants, and B is a diagonal matrix with elements    

    
 

  
⁄     ⁄ . Constants D and R come from the damping and droop equations respectively 

as seen in the first and second terms of the linearized equation. After finding this, we can then 

reduce it further to n-decoupled equations of 2 dimensions represented by: 
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Alpha is given by the eigenvalues of the matrix P and Beta is simply the common value of the 

diagonal elements of B. 

  

 From the matrix given earlier, we can find when the system is stable through the 

Lyapunov exponents of that matrix given by the equation:  
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The entire power system is stable if and only if the real part of those exponents is negative. 

Because of this fact, we only need to consider the maximum real values of those exponents. If 

the maximum is less than zero, then every other value will be as well. From this, we want to find 

for which value of    can we minimize the maximum real part. As we analyze the behavior of 

the function     with respect to    and fixed β, we find that the function is negative and 

decreases along the interval from      
  

 
 and then remains constant past that interval. 

Past 
  

 
, the square root portion of the equation turns complex, and no longer affects the real part 

any more than it has.  

 Now that we know how to minimize    , we want to know which α to choose. Again, a 

quick look at the behavior of the function reveals that it is smallest with the smallest non-

negative value of   . That value is   .     is a null eigenvalue, so we do not include that in this 

analysis of stability. Assuming a steady state and constant network system, α will be constant, so 

the only variable available to alter stability is β. Simple algebra gives the equation: 
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This is the ideal value of beta for system stability. 

 

Enhancement of synchronization stability 

 

Enhancement of the stability of the synchronous state happens by adjusting the parameters    

(Drooping parameter),    (Damping parameter),    (Kinetic parameter) where    √  . 

The right side of the equation accounts for the network structure and depends on the generators, 

while   depends on the generator parameters   ,   ,   .  
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The parameter    is altered for offline optimization of stability, when there is a slow change in 

demand. While, the parameter    is altered for online optimization of stability when there is 

rapid change in demand, usually caused by fluctuations in demand and faults. 

 



   

 
The graphs above show the process of the enhancing the stability of the synchronous state. The 

first graph shows the network without  . The second graph is when   is first introduced to the 

network. The third graph shows the network with    √  . Lastly the last graph is when 

perturbation is applied. 

 

 

 

 


