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 Mathematical modeling is a significant addition to the analysis of energy harvesting systems. 
While experiments and modeling are able to obtain results on their own, the process of using 
experimentation to improve models and using models to guide experimentation quickens the discovery 
process and allows for more intelligent research. The primary benefit that modeling provides is not 
necessarily the quantitative data provided, but the qualitative information gleaned. One can analyze the 
model to predict the change in the physical behavior of the system without having to perform 
experiments, which would be far more costly. Further, by predicting the behavior of the system, it is 
known whether or not that change to the system is worth investigating further via experimentation or 
more modeling. In the following, we take a known equation for harvesting energy and analyze the 
energy harvested when the system is at various angles from the original position. The purpose of this is 
for application in hand held devices, which are often placed in pockets or purses sporadically, thus 
knowing how much energy is likely to be generated throughout a day rather than the maximum amount 
of energy generated. 
 There is no such thing as a perfect transfer of energy. This theoretical situation is called the 
“Carnot cycle”, though such a process cannot be replicated. All processes are subject to energy loss to 
the environment, such as heating or cooling the ambient air, or performing work on the walls of the 
system. When work is performed on the environment through methods such as walking or driving on a 
surface, vibrations are released into the surface that eventually dissipate due to friction. One form of 
energy harvesting is to recapture these vibrations and recapture as much of the lost energy as possible. 
This can be done with a capacitor or inductor, but also with a piezoelectric material (PM). In the later 
situation, the vibrations are used to place compressive and tensile forces on the PM. When this is done 
below the materials Curie temperature, the atoms deform in such a way that a voltage drop forms 
across the PM, the direction depending on the direction of the deformation. (CITE) This voltage is 
normally used to reform the material after the stress is no longer applied, but in an energy harvesting 
device it is siphoned. (CITE) A rectifier must be used in such a circuit because the voltage formed by the 
PM will essentially be AC. 
 One design is to use an inverted pendulum to harvest the energy. Layers of a PM are placed at 
the base around a rod, the latter being attached to an inertial mass in order to more easily recapture the 
vibrations. The rod in this system is clamped, but the elasticity of the rod and PM allow for the inertial 
mass to oscillate linearly. It has been found, however, that non-linear oscillation was able to better 
harvest oscillations. This can be achieved by adding magnets with repelling polarities to the system. One 
is attached to the end of the inertial mass opposite of the PM and one is placed some distance λ from 
the pendulum. At some distance λ𝑐 the magnetic repulsion between the magnets causes the energy 
potential of the oscillator to turn from having a single potential well to two potential wells. As λ is 
decreased further from λ𝑐, the energy barrier between the two wells increases. The creation of the 
energy barrier causes an increase in the deformation of the PM, resulting in more voltage generated by 
the system and more energy harvested. The exact distance λ at which the system most efficiently 
harvests energy varies depending on the applied oscillating force. (CITE) More specifically, as the 
oscillating force applied increases, 𝜆𝑖𝑑𝑒𝑎𝑙 decreases. This is because the increase in harvested energy is 
due to the oscillator transitions between the two stable domains. If the energy barrier is too small then 
it transitions too frequently; if the energy barrier is too large, it does not transition often enough if at all.  
 The model for this system is: 



𝑚𝑒𝑓𝑓𝑥̈ =  
𝑑𝑈(𝑥)
𝑑𝑥

− 𝛾𝑥̇ − 𝐾𝑣𝑉(𝑡) +  𝜎𝜀(𝑡) 

𝑚𝑒𝑓𝑓𝑥̈ is the kinetic force of the oscillator. U(x) is the potential energy of the oscillator, given by: 
𝑈(𝑥) = 𝐾𝑥2 + (𝑎𝑥2 + 𝑏λ 2)−3/2 + 𝑐λ 2 

𝛾𝑥̇ is the energy dissipated due to the bending of the rod and PM. 𝐾𝑣𝑉(𝑡) is the energy transferred from 
the PM, where V(t) is given by: 

𝑉̇(𝑡) = 𝐾𝑐𝑥̇ −  
𝑉(𝑡)
𝑅𝐿𝐶

 

 𝜎𝜀(𝑡) is the driving force of the oscillator, which is represented as a stochastic process. The value of 
each variable is listed in Table 1. 

 For the purposes of analyzing the 
efficiency of the system at various angles, the exact 
value of the constants is irrelevant, so long as they 
remain constant. When analyzing this system, one 
has to look at the three degrees of freedom involved 
in rotating this system: rotation around a line 
running through the center of the system (z-axis), 
rotation around a line running perpendicular to the 
direction of oscillation, through the base of the 
system (x-axis), and rotation around a line running 
parallel to the direction of oscillation, through the 
base of the system (y-axis). The system as designed 
makes the assumption that the oscillations are small, 
and thus the effects of gravity have thus far been 
ignored in terms of modeling the oscillation of the 
pendulum. However, as the pendulum rotates 
around the x and y axes, the effect of gravity 
becomes non-negligible and must be taken into 
account. However, the force applied by gravity on 
the oscillator does not change with rotation around 
the z-axis, and thus only two degrees of freedom 
need to be considered. As the system is rotated 
around the x-axis, the force applied by gravity 
increases until the system is effectively 
rotated 𝜋

2
 radians. After this point, the gravity begins 

to apply less force until an effective rotation of π 
radians, after which the force applied by gravity is 0. 
When rotated around only the y axis gravity applies 
force in the direction perpendicular to the direction 
of oscillation. The rod is stiff enough in this direction that no bending is expected in this direction. 
However, when there is rotation about both the x and y axes, the force applied by gravity differs than if 
there was solely rotation about the x or y axis. For clearer representation, reference Figures 1, 2, and 3. 

The force applied by gravity must be scaled based on the angle at which the system is titled 
about the x and y axes. The angle of rotation around the x axis will be labeled β and the angle of rotation 
around the y axis will be labeled ψ. To start, the case will be considered where ψ=0. The force on the 
oscillator applied by gravity can be seen in Image 1. The force applied by gravity is decomposed into two 
components, one being parallel to the direction of oscillation and the other being perpendicular. Only 

Table 1 
Variable Meaning 
𝑚𝑒𝑓𝑓 Effective mass of the oscillator 
𝑥 Cartesian displacement of the 

inertial mass from the point of 
measurement 

𝐾 𝐾𝑒𝑓𝑓/2 
𝐾𝑒𝑓𝑓 Effective elastic constant of the 

pendulum 
𝑎 

𝑑2 �
𝜇0𝑀2

2𝜋𝑑 �
− 23

 

𝑑 Geometrical parameter related to 
the distance between the 
measurement point and the 
pendulum length 

𝜇0 The permeability constant 
𝑀 Effective magnetic moment 
𝑏 𝑎/𝑑2 
λ The distance between the magnets 
𝑐 𝐾𝑒𝑓𝑓 2𝑑2⁄  
𝛾 Dampening coefficient 
𝐾𝑣 Efficiency of the voltage transferred 
𝐶 Capacitance of the piezoelectric 
𝑅𝐿 Resistive load of the circuit 
𝐾𝐶  Coupling constant of the 

piezoelectric material 
𝜎 Standard Deviation 



the parallel component will alter the potential energy of the pendulum. β increases and decreases as the 
system oscillates, thus one must account for the oscillations. Thus, the applied force that is relevant to 
the analysis is 𝐺⃗ ∗ sin(𝛽 + 𝜃). The next case is when β=0, but as has been mentioned before gravity will 
have no effect on the system as none of gravity applies in the direction of oscillation. The third case is 
when β ≠ 0 ≠ ψ. In order to consider this case, one must consider a unit vector perpendicular to the 
direction of oscillation. At this time, it is also perpendicular to the force applied by gravity. However, as 
ψ increases, the angle between the vectors decreases. By using geometric relations, more easily 
observed in figure 2, one finds that when ψ ≠ 0, the force applied in the plane of the oscillator is no 
longer mg, where 𝑚 = 𝑚𝑒𝑓𝑓 and 𝑔 is the gravitational constant. Rather, it is 𝑚𝑔 ∗ cos (𝜓). Thus, the 
force of gravity applied by gravity is written as: 

𝐺⃗ = −𝑚𝑒𝑓𝑓𝑔 ∗ cos(𝜓) ∗ sin(𝛽 + 𝜃) 𝑧̂  
It is known that 𝐹⃗ = −∇��⃗ 𝑈, where ∇��⃗  is the gradient in cylindrical coordinates. (CITE) Thus,  −𝑚𝑒𝑓𝑓𝑔 ∗
cos(𝜓) ∗ sin(𝛽 + 𝜃) = 1

𝐿
𝑑𝑈
𝑑𝜃
𝜃�  and −L ∗ 𝑚𝑒𝑓𝑓𝑔 ∗ cos(𝜓) ∗ ∫ sin(𝛽 + 𝜃)𝑑𝜃𝜃

0 sin(𝛽 + 𝜃) = 𝑈. From this 
point, we see that the potential energy due to gravity is: 

𝑈 = 𝑚𝑒𝑓𝑓𝑔𝐿 ∗ cos(𝜓) ∗ [cos(𝛽 + 𝜃)− cos( 𝛽)] 
 

Figure 4                 Figure 5 

 
The effect of gravity will change as the system oscillates and as a result the model is more easily 

analyzed in terms of θ rather than 𝑥. Again, since the system is being analyzed qualitatively rather than 
quantitatively, the point along the rod at which 𝑥 is measured is irrelevant so long as it is taken 
consistently. So, the point will be the end of the rod. The transition to a model in terms of θ is achieved 
by converting the system to cylindrical coordinates, which results in the following equivalencies: 

𝑥 = L ∗ sin(θ) 

2.a 2.b 

Figure 1 Figure 2 Figure 3 
  



Figure 6 

𝑥̇ = L ∗ cos(θ)𝜃̇ 
𝑥̈ = −L ∗ sin(θ)𝜃̇ + 𝐿 ∗ cos (𝜃)𝜃̈ 

𝑑𝑥 = 𝐿 ∗ cos(𝜃)𝑑𝜃 
𝑑𝑈
𝑑𝑥

=
1

𝐿 ∗ cos (𝜃)
𝑑𝑈
𝑑𝜃

 

 
Thus, the model and potential energy in terms of θ are written as: 
 

𝑚𝑒𝑓𝑓�−L ∗ sin(θ)𝜃̇ + 𝐿 ∗ cos(𝜃)𝜃̈� =
1

𝐿 ∗ cos(𝜃)
𝑑𝑈
𝑑𝜃

− 𝛾 L ∗ cos(θ)𝜃̇ − 𝐾𝑣𝑉(𝑡) +  𝜎𝜀(𝑡)  

𝑈(θ) = 𝐾[L ∗ sin(θ)]2 + (𝑎[L ∗ sin(θ)]2 + 𝑏λ 2)−3/2 + 𝑐λ 2 + 𝑚𝑒𝑓𝑓𝑔𝐿 ∗ cos(𝜓)
∗ [cos(𝛽 + 𝜃) − cos( 𝛽)] 

 
As noted before, it is assumed that θ  is small, so the above equation simplifies to: 
 

𝜃̈ =
1

𝑚𝑒𝑓𝑓 ∗ (L)2
𝑑𝑈
𝑑𝜃

+ 𝜃𝜃̇2 −
𝛾

𝑚𝑒𝑓𝑓
𝜃̇ −

𝐾𝑣
𝑚𝑒𝑓𝑓 ∗ 𝐿

𝑉(𝑡) −
𝜎

𝑚𝑒𝑓𝑓 ∗ 𝐿
𝜀(𝑡)  

𝑈(θ) = 𝐾 L2 θ2 + (𝑎 𝐿2 θ2 + 𝑏λ 2)−3/2 + 𝑐λ 2 + 𝑚𝑒𝑓𝑓𝑔𝐿 ∗ cos(𝜓) ∗ [cos(𝛽 + 𝜃) − cos( 𝛽)] 
  
  
 

They potential energy was first 
analyzed at varying values of λ and β, 
mapping the potential U as a function of 
θ while ψ=0. The results are shown in 
Figure 6, where λ is in meters, β is in 
degrees, and θ is in radians. It was found 
that, as beta increases, the stability of 
each domain changes. The potential 
energy of the system is decreased in the 
direction which gravity is applying to the 
oscillator, leading to a deeper potential 
well. Simultaneously, oscillation in the 
opposite direction of oscillation is more 
difficult, leading to a shallower potential 
well in the direction opposite of gravity. 
There is no bias when β=0 or β=π, as 
gravity effects both directions equally. 
 Following, the potential energy 
was analyzed for various values of λ, 
graphing the potential energy of the 
system as a function of θ and β. It was 
found that the value of λ does not change 
the bias created by gravity, only the 
potential barrier between the two stable 
domains. 
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 Next, the variation in the 
potential energy as a function of θ 
and ψ were found for β=0, 𝜋

4
, and 𝜋

2
. 

When there is solely rotation 
around the y-axis, there is no 
variation in the potential energy of 
the oscillator. This is to be 
expected, as none of the force 
applied by gravity will be in the 
direction of oscillation.  
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