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Mathematical modeling provides a very cost effective means of studying 
epidemics by providing a means to understanding the particular disease without 
necessarily having to conduct the experiment physically.   It serves as a primary source 
and can help guide experimental designs and even on an expanded scope; models can 
help us visualize aspects of an experiment that we may otherwise be unable to observe.  It 
is a very useful technique in all academic fields employs it in different means.  Not only 
epidemics but numerical methods can also be used to estimate impact of biological 
attacks and in designing appropriate response strategies (4).  Here we developed a model 
for smallpox in order to determine the parameter sensitivity of smallpox transmission.   
 Smallpox is an infectious disease unique to humans and even though commonly 
agreed to have been eradicated in 1979 it still presents a threat as a potential biological 
weapon. Release of smallpox back into the population could constitute a significant 
public health problem (1).  Upon infection with smallpox, the disease progresses through 
several distinct stages.  Immediately following infection there is an incubation phase of 
the virus during which the infected individual shows no symptoms and is also not 
contagious.  This phase lasts up to about 2 weeks upon which the individual starts 
displaying early symptoms.   In this prodrome phase the patient experiences fever and 
body ache and even though contagious the infectivity is often negligible (3).  This phase 
lasts about 4 days and then transitions to the last phase where the late symptoms of 
smallpox infection are apparent.  The fulminant phase begins with the onset of rash 
which spreads to cover the entire body within 24 hours (4).  At this stage the person is 
extremely contagious and will stay so for about 10 days after the rash appears.  If the 
person recovers the scabs from the rash, which retain their infectivity somewhat longer, 
fall off after about 3 weeks.  Therefore within an individual, the full cycle of the disease 
from infection to recovery takes about 7 weeks time.  
 The SIR model is widely used to describe the spread of a disease through a 
population and is an excellent model for smallpox whose transmission usually require 
direct personal contact with an infected individual (4).  In this simplified model the 
population is broken into three categories.  The Susceptive population is open to infection 
by the virus and those who are infected move to the Infected group forming the second 
category.  Following successful recovery from the disease after infection the individual is 
assumed to acquire lifetime immunity against the virus and joins the third catergory, 
Recovered population.  Another simplifying assumption is that each individual in the 
population being studied has to belong to one of these categories.  This is often a 
reasonable assumption since the cycle of the disease being modeled is often much shorter 
than the natural life expectancy and as such the natural increase or decrease in the 



population due to new births or deaths can be neglected.  Of course, when looking at 
epidemics such as s HIV with longer cycles the model has to be adjusted appropriately in 
order to more closely simulate the epidemic.   
 For our simulation, in order to better model the transmission of smallpox we used 
a modified SIR that accounted for the specific stages that arise during the progress of the 
disease.   Since the disease evolves over a period of a about 7 weeks we made the 
assumption that changes in the total population were negligible.  The entire population 
was then divided into seven distinct categories.  The first category is the Susceptible 
population who are not yet infected but can be under the appropriate conditions.  Once 
infected the second category refers to the Incubation phase of the virus when the 
individual is not yet contagious. The third is the Prodrome who are infected and showing 
early symptoms of infection.  Even though they can infect the susceptible population their 
infectivity is negligible.  After this phase the individual starts displaying more specific 
symptoms and enters the fourth category who are highly Contagious.  These are the most 
infectious group of the population.  Based on previous responses to epidemic outbreaks 
the individual is often quarantined after getting to the contagious phase and this 
Quarantined population forms the fifth category of our model.  Since they have been 
isolated from the general population we assume that they are no longer able to infect the 
susceptible population.  Subsequently the quarantined population is then faced with either 
of two fates, Death or Recovery, which form the last two categories of our model for 
smallpox.   
 For this model we assume that all the infected individuals go through the 
quarantine phase and this can be used to simulate isolation response strategies (4).  The 
transition probabilities β, α, γ, σ, ν and λ determine the rates that the population in each 
phase shifts from one to the next.  With these variables and parameters the representation 
of our model in picture format as well as the equations we used to simulate it are shown 
below.   

 
Figure 1.  An illustration of disease transmission process (4). 
 



 
Figure 2.  A system of equations used to model smallpox transmission 
 
 Our simulation was designed to test the sensitivity of each of the parameters to the 
different variables.  In order to test this we started with a fixed population having 90% 
susceptible individuals with the rest infected with smallpox.  All of the parameters were 
fixed at a value of 0.1 while varying only the one being tested incrementally from 0 to 1.  
For instance, in order to test the sensitivity of the susceptible population to changes in the 
probability of transmission, β, we set all other parameters to 0.1 while varying β over a 
range of 0 to 1 in 0.1 increments.  We then ran the simulation and observed how this 
changed the composition of the susceptible population.  This particular simulation 
yielded the plot displayed below.  

 
Figure 3.  S as a function of time for different values of β 
 



The top (green) line represents the susceptible population when β=0 while the bottom 
(red) line shows the susceptible population when β=1.  The intermediate blue lines show 
how the susceptible population changes with β.  We did similar simulations for all of the 
other variables with each of the parameters in order to determine each of their 
sensitivities to the system.   
 From the simulation results we arrived at several interesting conclusions about 
our model.  Variation of β showed most sensitivity in the susceptible and incubating 
populations as may be expected from the system of differential equations used for the 
model.  Since β determines the rate of transmission it is inversely related to the 
susceptible population but directly related to the incubating population.  Thus as β 
increases we observed that the susceptible population decreases faster while the 
incubating population increases.  Similarly, varying σ - the frequency of incubation- 
mostly affects the incubating and prodrome population to which it is directly linked by 
the differential equations.  As σ increases the population moves faster between the 
incubating and prodrome stages.  This pattern also holds for α –the frequency of 
prodrome.  As α increase we observe the population transitioning faster to the contagious 
state.    
 An interesting situation occurs in the case of γ – the rate of quarantine.  Once 
quarantined the individual is assumed to no longer be able to transmit the disease to the 
susceptible population so we notice sensitivity in both the contagious, incubating and 
susceptible populations.  As we increase the value of γ above zero the population is 
transitioning faster from the contagious to the quarantined state.  We observe the fast 
decline in the contagious population as γ is increased.  If most of the population is 
quarantined there are less individuals who are susceptible that are infected.  Accordingly 
we observe a steady decline in the incubating population.   Lastly, for ν – the frequency 
of disease- sensitivity is only observed in the quarantined population as may be expected 
from observing the system of equations.  This result is similar to that obtained for λ – the 
death rate- which of course only affects the ratio of the Dead and Recovered populations, 
without showing any sensitivity in the other variables.   
 Using our model simulations we were able to determine the sensitivity of various 
parameters to the transmission of smallpox.  All the variables tested showed some 
sensitivity to the parameters β, α, γ, and σ even though the magnitude of this sensitivity 
differed between the different variables.  ν and λ only showed sensitivity to the variable 
they were directly linked by the differential equations and are thus the least sensitive of 
the parameters tested.  We are still pursuing other avenues of sensitivity analysis, 
specifically encoding the Jacobian matrix for our set of variables and parameters, in order 
to determine the most sensitive of these parameters to the transmission of smallpox.     
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