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Abstract

Boiling an egg in water is a common kitchen occurence throughout the world. As
simple as the situation seems though, developing an accurate ad realistic model
of the situation is not so simple. A discontinuous diffusion coefficient function
due to the egg composition in addition to an undefined geometric egg shape
provide the foremost problems in analysis of this situation. By making numerous
assumptions, a very basic model can be developed of the egg which assumes a
constant diffusion coefficient. Namely the heat equation from an introductory
course on partial differential equations and a finite difference approximation of
said equation were obtained as the foundamental, assumption-dominated model.
However, removing the assumption of a constant diffusion coefficient, making it
a piecewise function, and ignoring the discontinuity at the interface between the
albumen and yolk, another partial differential equation is obtained along with
a finite volume approximation equation. The aforementioned equations will be
tested in an applied analysis lab to confirm the resulting equations. Ultimately
the goal is to obtain a three-dimensional model of the egg boiling in the water
and then attempt to cook the yolk of the egg without cooking the albumen.



1 Introduction

A mathematical model provides a description of a system using concepts and
language from the field of mathematics. By mathematically modeling situa-
tions, predictions about the system’s behavior can be ascertained in an efficient
manner. Used in disciplines including engineering, natural sciences, business,
and social sciences, mathematical modeling has a strong influence on the inner-
workings of all society. Here, a mathematical model of science in the kitchen is
applied to the seemingly simple situation of a boiling egg.

An egg is composed of three primary materials: the shell, the albumen, and
the yolk. In general,the shell accounts for 9% to 12% of the total weight of the
egg. The shell color, size, and strength primarily depend on the egg-producing
animal’s age and diet. Shells are porous solids that are sealed via a protective
coating called a cuticle, which depends on the quality of the eggs and can be
removed simply by washing the egg. Regardless of how the egg is produced
though, shells are very thin and weak in comparison to the rest of the egg. The
albumen is more commonly referred to as the egg white and makes up approxi-
mately 67% of the liquid weight of a standard hen’s egg. As the egg itself ages,
the white becomes thinner as the protein composition changes and it becomes
more transparent with a lowering coagulate temperature range [3]. Coagulating
refers to the change of a substance to a solid state [4]. Consequently, as an egg
ages, it takes a shorter amount of time to boil that egg [4]. The remaining 33%
of liquid weight that constitutes the total liquid weight of an egg is referred to
as the yolk. The yolk is where all the fat resides in addition to approximately
half the protein. It is composed of many substances and elements including
phosphorus, iron, copper, calcium, vitamin D, etc. In contrast to the albumen,
the coagulation occurs within the constant range of 65 to 70 degrees Celsius.
Below is a picture of egg composition discussed above. Notice that there are
thin membranes that separate the primary components of the egg in addition
to the air cell and chalazae, which are an air space and anchors the yolk in the
center of the egg respectively.

Figure 1.1 - Cross Section of an Egg
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There are two general methods employed to boil an egg; soft-boiling and hard-
boiling. Soft-boiling involves cooking the egg for a shorter amount of time than
hard-boiling and refers to the firmness of the yolk upon conclusion of the cook-
ing time frame. In both cases, there are two options within each method. One
technique starts the egg in cold water, which is then brought to a boiling state,
while the second involves boiling the water first and then inputting the egg. The
manner in which the egg is cooked, whether it be soft-boiled or hard-boiled as
an end result, is crucial to the modeling of this process [4].

An egg is boiled and therefore cooked through a temperature gradient by
a process known as thermal diffusion or thermodiffusion. Thermal diffusion is
the process by which the temperature inside a substance is changed to reach
an equilibrium state, which is defined at a constant temperature. Temperature
changes occur more appropriately by energy transfer from a warmer region
to a colder one, which is defined by heat. Therefore, heat and temperature
are distinct yet interrelated scientific quantities. Once the temperatures are
consistent between regions, heat ceases to flow and the equilibrium state is
defined.

The rate of thermal diffusivity depends on material properties and hence
changes based on substance composition [1]. The specific heat is, just as it
sounds, unique to the substance it defines and refers to the amount of heat
required to increase the temperature of one kilogram of said substance by one
degree Celsius. It is this property that determines the rate at which temperature
changes from the heat flow. The state of the substance is equally as important
to the specific heat, though. Introductory chemistry concepts state that the
temperature does not change when a substance is changing its state, i.e. going
from liquid to solid. This is important to remember as the boiling of an egg is
studied [3].

Furthermore, the rate of heat flow is dependent on how the bodies are in con-
tact, the speed of heat flow in the objects, and the difference in the temperature
of the two objects that create the temperature gradient and thus causes thermal
diffusivity to occur. Since heat transfer is causing the temperature difference
to shrink as the bodies reach equilibrium, intuitively it is known that the rate
of heat flow decreases as the bodies reach that equilibrium state. Additionally,
the thermal conductivity is crucial with respect to the thermal diffusion [1].
Thermal conductivity is defined as the rate at which heat will flow through a
body and a perfect thermal conductor transmits the energy instantaneously and
is impossible to observe in the real world. With that being said, a perfect ther-
mal conductivity is a reasonable idealization to employ when developing some
models of substances [3].

Convection is the method of heat transfer associated with the boiling of an
egg and many other domestic heating applications. Simply stated, convection is
the transfer of heat from a fluid, which may be a liquid or a gas, to its surround-
ings. This method of heat transfer consequently results in the temperature at
any point in an object being heated to be dependent on both the time that
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the object has been placed in the surrounding fluid and on the position inside
the object the temperature is being measured at. Designating that an object
is cooked means that said object was placed at some high temperature for a
specified time. Therefore, the heat from the surrounding fluid diffuses into the
object being cooked.

2 Constant Diffusion Equation Derivation

Now that we know we are working with convection and thermodiffusion inside
a egg being boiled, the next step is to develop a very simple equation that mod-
els the situation aforementioned. However, the egg presents a few immediate
problems, which are as follows:

1. The egg is not an easily defined geometric shape.

2. The egg is composed of a shell, white, and yolk each consisting of a different
thermal diffusivity constant.

3. The properties at which each part of the egg changes state depends on the
elemental and protein composition of each part.

4. The boundaries will shift slightly as the state of the albumen and yolk
solidify since solids are more compact then liquids.

5. The surrounding temperature can vary.

To account for these problems and aid the development of a simple model
of the thermal diffusion in an egg, various assumptions were made.

1. Assume the egg is a perfectly spherical object.

2. Assume the shell is infinitesimally thin and a perfect thermal conductor.

3. Assume the diffusion coefficient in the albumen and yolk are equal.

4. Assume the effects of chemical variations in each primary part of the egg
can be ignored.

5. Assume the boundaries are fixed.

6. Assume the surrounding temperature is constant.

For the sake of simplicity, a one-dimensional analysis is applied for the initial
derivation of a model. Therefore, with the 1D analysis and assumptions stated
above, a model can be developed. Stokes’ Theorem permits the computation of
flux through a surface. The flux is also the rate of change of temperature with
respect to time. As a result, Stokes’ Theorem unveils the following equation.

δu

δt
=

∫
sΩ

f · ~ndsΩ =

∫
Ω

∇fdΩ (1)
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In this equation, u(x,t) is the temperature at position x after time t, sΩ is
the Gaussian surface defining the egg, and f is the flux. From this, the goal is to
find u(x,t) and how it changes with respect to time. Fick’s First Law provides
us a means of writing the flux in a different way. Fick’s First Law relates the
flux to the diffusion constant, D, and the temperature via this equation.

f = D∇u (2)

By using equations 1 and 2 together, equation 3 is obtained. Equation 3 is
important because it holds for every point in the egg.

δu

δt
= ∇ · [Dgrad(u)] (3)

However, taking the one-dimensional analysis into consideration, equation 3
becomes the partial differential equation seen in equation 4.

δu

δt
=
dD

dx

δu

δx
+D

δ2u

δx2
(4)

Equation 4 is the governing equation for a simplified model of an egg boiling
in water. However, the objective is not to obtain a model subject to errors, but
instead obtain the most exact model possible for this situation. As simple as this
model is, applying the assumptions above simplifies it more and permits analysis
of the model. Assuming the egg is centered on the x-axis so that the outer
boundaries are at x=-1 and x=1 and taking the temperature at the boundaries
to be the temperature of the constant water temperature provides the necessary
boundary conditions. Additionally, an initial condition is necessary for analysis
in which the state of the egg is given by f(x), which is initial heat distribution
profile. Moreover, equation 4 simplifies to the following since we are assuming
D is constant.

δu

δt
= D

δ2u

δx2
(5)

Equation 5 is an introductory partial differential equation known as the
heat equation, and from a beginning course in partial differential equations, it
is possible using the method of separation of variables and Fourier series to
analyze equation 5. With that being said, the goal is to obtain a more complex
and exact model, which starts by making a finite difference approximation of
the heat equation.

Finite difference approximations call on the method of undetermined coef-
ficients and visually are defined by figure 2.1 below. Equation 6 is the direct
result from the approximations and Taylor series expansions of the neighboring
temperatures demonstrate the error involved from the approximations [2].
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Figure 2.1 - Finite Difference Approximation Visual

δu

δt
= D

ui+1 − 2ui + ui−1

∆x2
(6)

The error is demonstrated by equation 7.

δ2u

δx2
+

∆x2

4!

δ4

δx4
=
ui+1 − 2ui + ui−1

∆x2
(7)

Obviously ∆x2

4!
δ4

δx4 is the term that accounts for the error resulting from the
finite difference approximations. However, this error was acceptable for practical
analysis of the situation for the assumptions made. Therefore, MatLab can be
employed to visualize the results obtained with greater ease.

By using a simple code with fixed constants and setting a desired end temper-
ature for the center of the egg to reach, it is obvious to understand the behavior
of the thermal diffusivity of an egg boiling in constant-temperature water. Table
2.1 below shows results based on equations 5 and 6 implemented in a code. The
table demonstrates that a fixed value of D, the diffusion constant, was selected
and the equations used in MatLab produced different time values based on the
diffusion constant value, as expected.

Table 2.1 - MatLab Time Results for Different D Values

Some important parameters and variables distinguished in the code to result
in the values obtained in table 2.1 are as follows:
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Table 2.2 - Fixed Values for Code

From this table, notice that it took about ten times longer to reach the
desired temperature at the center of the egg, according to our model, when the
diffusion constant was decreased by a factor of ten. This observation results
from the direct relationship between the diffusion constant and the thermal
diffusion rate with respect to time seen in equations 4 and 5 above. Now the
diffusion constant is a material property, but it is obvious that a material with a
higher diffusion constant will take a shorter time to reach thermal equilibrium.

Equally as important to observe, figures 2.1 through 2.3 below demonstrate
the unique initial temperature distribution throughout the egg, the increased
continuity of the curve as time progresses, and the final temperature distribution
in the egg once the desired center temperature is reached.

Figure 2.1

Figure 2.2

6



Figure 2.3

Though the equation derived and tested in MatLab provides expected in-
formation and results governing an egg boiling in water, it required various as-
sumptions that are unrealistic. Ultimately, a mathematical model providing the
most exact and realistic description of this situation is to obtained. From this
simple model, a more complex model can be found by eliminating assumptions.
The first assumption to be removed is that of a constant diffusion coefficient,
D.
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3 Varying Diffusion Equation Derivation

As aforementioned, the diffusion constant is a material property and therefore
will differ values in each of the primary regions in an egg. Considering the
diffusion coefficient in the yolk to be Dy and the diffusion coefficient in the
albumen to beDw, this problem presents a discontinuity at the interface between
the two regions. From first-year calculus, it is known that derivatives only
exist for continuous functions. Here the piecewise function is not differentiable,
however for the sake of simplicity this problem is ignored. Equation 8 shows
the diffusion function.

D(x) = { Dy − 0.5 x ≤ |0.5|
Dw x > |0.5| (8)

Since the equation above confirms that the diffusion constant will vary ac-
cording to the position x in the egg, equation 4 applies to this situation. The
boundary conditions and initial condition are the same as before, but flux and
the derivative of the flux must be computed yet again. Previously, finite dif-
ference approximations were applied to derive the constant diffusion coefficient
equation. However, the same method cannot be applied here. Instead, finite
volume approximations must be employed to find the previously ignored dD

dx
δu
δx

term distinguishing equations 4 and 5 from each other.
The flux for the varying diffusion problem is as follows:

fi+1/2 = Di+1/2
ui+1 − ui

∆x
(9)

Equation 9 is differentiable and by taking the derivative equation 10 is ob-
tained.

δ

δx
fi+1/2 =

fi+1/2 − fi−1/2

∆x
(10)

Putting the results from equations 9 and 10 together, an equation for the
rate of change of temperature with respect to time is discovered. Equation 11
below is the varying diffusion constant equation for an egg being boiled in water
developed via finite volume approximations. Just as in proceeding section, the
error involved by applying this method to the generalized model can be seen
using Taylor Series Approximations and a similar error value would result.

δu

δt
=
Di+1/2(ui+1 − ui)−Di−1/2(ui − ui−1)

∆x2
(11)

Notice that if the diffusion constant does not vary, then equation 6 is ob-
tained again. Equation 11 is approximately equivalent to the more involved par-
tial differential equation found previously and denoted by equation 4. Despite
this visually more complex equation, recall that there were numerous assump-
tions constraining the accuracy of the equation. Reference section 0.2 to see the
assumptions again.
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4 Conclusion and Next Steps

To summarize, studying the thermal diffusion in an egg boiling at constant tem-
perature in water is an interesting and deceivingly complex situation to study.
Composed of three primary parts and not easily defined by a standard geo-
metrical figure, the egg is difficult to develop a mathematical model for. By
removing assumptions systematically, more realistic models can be obtained to
aid analysis of this everyday situation. Beginning with equations 5 and 6, a
model distinguished by the constant diffusion assumption, which were obtained
as described in section 2 provide a fundamental and basic model of the afore-
mentioned situation. Acknowledging that the diffusion constant is a material
property and that the egg is composed of three distinct materials essentially,
a piecewise function for the diffusion coefficient was implemented in section 4.
Consequently equations 11 and 4 model an egg with two diffusion constants
boiling in water. Though the latter two equations are more complex, they are
still heavily dependent on various assumptions and require further development
to get a more realistic model.

At this point, there is a lot of analysis still possible. Prior to proceeding
however, the goal is to validate the behavior described by our equations to
confirm their reliability at this point. From the equations, there is an obvious
relationship that the rate of thermal diffusion is directly related to the diffusion
constant, as expected. Moreover, there is an important and intriguing rela-
tionship occurring with respect to the position inside the egg. However, other
characteristics of the egg may also be significant but not described in the cur-
rent mathematical model. For example, varying the width and even type may
change the rate of thermal diffusion. For these reasons, an applied analysis lab
will provide an opportunity to test the current equations. In the tests, different
chicken eggs will be tested along with an ostrich egg to visualize the scenario
more fully.

Upon confirmation of the results obtained here, the next step is to develop a
three-dimensional model of the egg. This is an important step towards obtaining
a realistic model simply because an egg is a three-dimensional figure and not
spherical or even easily defined geometrically speaking. Notice that again, our
process is to systematically eliminate assumptions stated in section 2. The
assumptions made were of an ideal and impossible egg-boiling situation. Hence,
by decreasing the number of assumptions, the model becomes more real. Once
the three dimensional model is developed, again it will be put to the test in an
applied analysis lab. To test the model, the goal will be to cook the yolk of the
egg without cooking the albumen. Through a clear understanding and model of
the diffusion rate in each part of the egg, cooking the yolk to be solid while the
albumen remains liquid should be possible. At a glance, proceeding from this
point will result in the following three dimensional and spherical model of the
egg:

δu

δt
=

1

r2

δ

δr
(Dr2 δu

δr
) +

1

rsinθ

δ

δθ
(Dsinθ

δu

δθ
) +

1

r2sin2θ

δ

δψ
(D

δu

δψ
) (12)
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This equation will be derived and developed extensively moving forward. By
developing a code, using the simple results obtained above, and further studying
equation 12, a more applicable and significant mathematical model will result
permitting us to make attempts at goals previously stated.

5 References

[1] Aslamazov, L. G., A. A. Varlamov, and A. A. Abrikosov. The Wonders of
Physics. Singapore: World Scientific, 2001. 37-52. Print.

[2] Hoffmann, Franz. The Finite Volume Method for Solving Partial
Differential Equations.Tech. New Orleans: Tulane University, 2012. Print.

[3] ”The Science of Boiling an Egg.” Boiling an Egg. N.p., n.d. Web. 17 Mar.
2014.

[4] ”Science of Eggs: Anatomy of an Egg — Exploratorium.” Exploratorium:
The Museum of Science, Art and Human Perception. N.p., n.d. Web. 17 Mar.
2014.

10


