

Stability of Lagrange Points: The James Webb Space Telescope

Project Description

- ☐ Investigates the forces on an object influenced by the gravity of the Sun and the Earth
- ☐ Calculates the stable points of this system, known as Lagrange Points
- ☐ Analyzes stability of the five Lagrange Points
- ☐ Determines time range for stability
- ☐ Predicts behavior of an object near a Lagrange Point

Scientific Challenges

- ☐ There is no general analytical solution to the three-body problem
- ☐ It is impossible to predict the motion of the Sun, Earth, and an object for every case

Potential Applications

- ☐ The James Webb Space Telescope (JWST) will be placed at the second Lagrange Point (L2)
- JWST, named the successor to the Hubble Space Telescope, will:
 * Observe infrared light and allows it to see greater distances than Hubble
 - * Gather data about the aftermath of the Big Bang and the formation of stars and galaxies
- L2 is an ideal place for JWST:
 - * The telescope is able to stay in the same location with minimal position correction
 - * Can observe the entire sky without interference from the sun

FIGURE 2: Energy Contour plot. Extrema of the generalized potential are marked with x's.

Team Members:

Gianna Cacolici
Jake Hanson
Cassandra Lejoly
Kyle Pearson
Katie Reynolds

Method of Solving Analytically

- 1. Solved for the position of the Lagrange Points by implementing the coriolis force and the centrifugal force in a co-rotating frame.
- 2. Linearized the equations of motion around the equilibrium points to obtain their stabilities.

Method for Numerical Simulations

- . Used Python and C/C++ with a fourth order Hermite Integrator to develop a 2D program to simulate the Earth-Sun system and Lagrange Points within a co-rotating frame.
- 2. Imported the equations of motion for the system.
- 3. Enhanced the program to run in 3D.
- 4. Within the program an object was placed at known Lagrange Points.
- 5. Tested the length of time the object will stay in orbit.
- 6. Recorded the orbital path of the object within the simulation.

Results

P	oint	Location	Stability	Drift Time (computational)
Λ	L1	$\left(R\left[1-\left(\frac{\alpha}{3}\right)^{\frac{1}{3}}\right],0\right)$	Saddle	24.9 days
	L2	$\left(R\left[1+\left(\frac{\alpha}{3}\right)^{\frac{1}{3}}\right],0\right)$	Saddle	24.4 days
	L3	$\left(-R\left[1-\left(\frac{5\alpha}{12}\right)^{\frac{1}{3}}\right],0\right)$	Saddle	43.12 years
13	L4	$\left(\frac{R}{2}\left(\frac{M_1-M_2}{M_1+M_2}\right),\frac{\sqrt{3}}{2}R\right)$	Stable Due to coriolis force	Not Calculated Due to stability
	L5	$\left(\frac{R}{2}\left(\frac{M_1-M_2}{M_1+M_2}\right),-\frac{\sqrt{3}}{2}R\right)$	Stable Due to coriolis force	Not Calculated Due to stability

$$\alpha = \frac{M_2}{M_1 + M_2}$$

Glossary of Technical Terms

Lagrange Point: A point where the forces balance out between two bodies

Co-rotating frame: Rotates at the same speed as the Earth in order to make the system appear stationary

Coriolis force: Accounts for the curved motion of a body that

appears as a straight motion in a co-rotating frame

Centrifugal force: A fictitious force that draws an orbiting body away from the center of rotation

References

- 1. Cornish, Neil J. "The Lagrange Points." University of Montana, n.d. Web. 01 Mar. 2014. http://www.physics.montana.edu/faculty/cornish/lagrange.
- 2. James Webb Space Telescope. Digital image. James Webb Space Telescope. NASA, n.d. Web. 24 Apr. 2014. http://www.jwst.nasa.gov/.
- 2. "James Webb Space Telescope." James Webb Space Telescope. NASA, n.d. Web. 6 Mar. 2014. http://www.jwst.nasa.gov/.
- 3. Lagrange, J. L. Essai D'une Nouvelle Méthode Pour Résoudre Le Probleme Des Trois Corps: Oui a Remporté Le Prix De L'Academie Royale Des Sciences En 1772. Paris: S.n., 1772. Print.

Acknowledgments

This project was mentored by Alexander Young, whose help is acknowledged with great appreciation.

Support from a University of Arizona TRIF (Technology Research Initiative Fund) grant to J. Lega is also gratefully acknowledged.