
A Segway is an example of an Inverted Pendulum with an oscillatory base, while Magnetic 
Levitation is a system that uses the interaction of two oscillatory forces with different speeds. 
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Methodology

1. Measure the dimensions of the pendulum and find the center of mass.

2. Using a high speed camera, determine the minimum frequency of stability for 

the vertical, horizontal, and arbitrary case.

3. Compare experimental results with theoretical expectations.

4. Determine error.

Results and Comparison

The theoretical model we used is for a simple pendulum. The 
pendulum used in the experiment was a physical pendulum. To 
develop a more accurate model, we account for the moment of inertia 
of the rod, which is summarized in the table below under the 
“Corrected Theoretical” column

Potential Applications

1) Landau L. D. & Lifshitz E. M., Mechanics, Second Edition: Volume 1, (Course of 
Theoretical Physics), (Oxford ; New York : Pergamon Press, 1976), pp 665-70. Oscillations of 
systems with more than one degree of freedom.

Raw Data Table Measurement

Length of Pendulum  (m) .187

Diameter of Pendulum (m) 0.009525

Amplitude  (m) 0.020

Minimum 0.010

Maximum 0.030

Frequency (rad/s) 275.62

Angle of Base 51°

Momentum of Inertia

Theoretical Definitions
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Measurement Theoretical Experimental Corrected Theoretical

Vertical Stability Angle 180° 180° 180°

Critical Angle 97° 113° 98°

Horizontal Stability Angle 83° 76° 82°

Arbitrary Stability Angle 136° 109° 135°

Error Analysis Measured Value Absolute Error Percent Error

Length of Pendulum (𝑙) 𝑙 = 0.187 meters δ𝑙 =  0.001 meters .54%

Amplitude of Base (d˳) d˳ = 0.020 meters δd˳ =  0.001 meters 5.0%

Period for 60 Oscillations (T*) T* = 1.35 seconds δT* =  0.05 seconds 3.7%

*Note that angular frequency could not be directly measured. T* is the length of time required for the base of the pendulum to make 60 oscillations. T* 

can be related to Angular Frequency in the following way:       𝜔 = 2𝜋 ∗
60
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θc = 97° ± 0.86 ° = 97° ± 0.88%
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Methodology

1. The Pendulum is treated as a point mass at its center.
2. The equations of motion for the vertical, horizontal, and arbitrary cases are 

determined by finding the Lagrangian for each case.
3. Determine stability conditions.
4. Using averaging, determine the Effective Potential.
5. Use the Effective Potential to determine ranges of stability.

Results
• Vertical Equations
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• Horizontal Equations
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• Arbitrary Equations
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θs = 83° ± 0.86 ° = 83° ± 1.04%


