HW2:

1. Consider two following differential equations:

$$
\begin{aligned}
& m \ddot{x}(t)+\gamma \dot{x}(t)+k x^{3}(t)=0 . \\
& m \ddot{y}(t)+\gamma \dot{y}(t)+k \tan [y(t)]=0 .
\end{aligned}
$$

a) Find the potential V and derive expression for the energy in the form of $E=T+V$ for both cases.
b) What are dimensions of k and γ in both cases? Here dimensions of mass, time and distance are taken in kilograms, seconds and meters respectively $([m]=k g,[t]=s e c$ and $[x]=m)$. Function $y(t)$ is dimensionless.
c) Write these equations in dimensionless form and check if you can "get rid" of both parameters k and γ.
d) Sketch the phase portrait associated with these differential equations.
2. Show that the potential of the equation

$$
\ddot{x}(t)+\frac{1}{2} \sin \frac{x}{2}+\sin x=0
$$

has the form $V(x)=2-\cos (x / 2)-\cos x$ which is presented in the following figure:

Figure 1: The dependence of V as function of x.
a) Sketch the phase portrait associated with this equation.
3. The equation of motion for the linear pendulum reads

$$
l \ddot{\theta}+\gamma \dot{\theta}+g \theta=0
$$

Pendulum length is $l=10.2 \mathrm{~m}$, the gravitational constant is $g \simeq 9.81 \mathrm{~m} / \mathrm{sec}^{2}$.
Consider two cases: $\gamma=2 \sqrt{g l}$ and $\gamma=0.2 \sqrt{g l}$
a) Represent the equation in dimensionless form.
b) For each case find solution of the following initial value problem:

$$
\begin{aligned}
& l \ddot{\theta}+\gamma \dot{\theta}+g \theta=0 \\
& \theta(0)=1, \quad \dot{\theta}(0)=2 .
\end{aligned}
$$

d) Plot graph of both solutions and provide interpretation of results.

