MATH 215

Homework \# 1

- Determine which equations are linear equations in the variables x, y and z. If any equation is not linear, explain why not.

1. $x^{2}+y^{2}+z^{2}=1$
2. $2 x-3 y-5 z=0$

- Find the solution set of each equation.

3. $3 x-6 y=0$
4. $x+2 y+3 z=4$.

- 5. Solve the given system by back substitution

$$
\begin{aligned}
2 u-3 v & =5 \\
2 v & =6
\end{aligned}
$$

- 6. Find the augmented matrix of the following linear system

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=1 \\
x_{1}+x_{3}=0 \\
-x_{1}+2 x_{2}-2 x_{3}=0
\end{array}
$$

- 7. Find a system of linear equations that has the given matrix as its augmented matrix

$$
\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & -1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{array}\right] .
$$

Solve this system of equations.

- 8. Determine whether the given matrix is in row echelon form. If it is, state whether it is also in reduced row echelon form.

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

- 9. Use elementary row operations to reduce the given matrix to (a) row echelon form and (b) reduced row echelon form.

$$
\left[\begin{array}{ccc}
-2 & -4 & 7 \\
-3 & -6 & 10 \\
1 & 2 & -3
\end{array}\right]
$$

- 10. Show that the given matrices are row equivalent and find a sequence of elementary row operations that will convert A into B.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right]
$$

- 11. What is wrong with the following "proof" that every matrix with at least two rows is row equivalent to a matrix with a zero row?

Perform $R_{2}+R_{1}$ and $R_{1}+R_{2}$. Now rows 1 and 2 are identical. Now perform $R_{2}-R_{1}$ to obtain a row of zeros in the second row.

- 12. For what value(s) of k, if any, will the system have (a) no solutions, (b) a unique solution, and (c) infinitely many solutions?

$$
\begin{aligned}
& x+k y=1 \\
& k x+y=1
\end{aligned}
$$

