Homework # 10

Section #4.4

• 1. Find the coordinate vector $[\vec{x}]_{\mathfrak{B}}$ of \vec{x} relative to the given basis $\mathfrak{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\},\$

$$\vec{b}_1 = \begin{bmatrix} 1\\ -1\\ -3 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} -3\\ 4\\ 9 \end{bmatrix}, \ \vec{b}_3 = \begin{bmatrix} 2\\ -2\\ 4 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} 8\\ -9\\ 6 \end{bmatrix}.$$

• 2. Find the change of coordinate matrix from \mathfrak{B} to the standard basis in \mathbb{R}^n .

$$\mathfrak{B} = \left\{ \begin{bmatrix} 3\\0\\6 \end{bmatrix}, \begin{bmatrix} 2\\2\\-4 \end{bmatrix}, \begin{bmatrix} 1\\-2\\3 \end{bmatrix} \right\}.$$

• Use the inverse matrix to find $[\vec{x}]_{\mathfrak{B}}$ for the given \vec{x} and \mathfrak{B} .

3.

$$\mathfrak{B} = \left\{ \begin{bmatrix} 1\\-2 \end{bmatrix}, \begin{bmatrix} -3\\5 \end{bmatrix} \right\}, \ \vec{x} = \begin{bmatrix} 2\\-5 \end{bmatrix}.$$

4.

$$\mathfrak{B} = \left\{ \begin{bmatrix} 1\\ -1 \end{bmatrix}, \begin{bmatrix} 2\\ -1 \end{bmatrix} \right\}, \ \vec{x} = \begin{bmatrix} 2\\ 3 \end{bmatrix}.$$

- 5. The set $\mathfrak{B} = \{1 t^2, t t^2, 2 t + t^2\}$ is a basis for \mathbf{P}_2 . Find the the coordinate vector $\mathbf{p}(t) = 1 + 3t 6t^2$ relative to B.
- 6. The vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$ span \mathbf{R}^2 but do not form a basis. Find two different ways to express $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as a linear combination of $\vec{v}_1, \vec{v}_2, \vec{v}_3$.
- 7. Let $\mathfrak{B} = \left\{ \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} -2 \\ 9 \end{bmatrix} \right\}$. Since the coordinate mapping determined by \mathfrak{B} is the linear transformation from \mathbf{R}^2 into \mathbf{R}^2 this mapping must be implemented by some 2×2 matrix A. Find it.
- 8. Let p₁(t) = 1 + t², p₂(t) = 1 3t², p₃(t) = 1 + t 3t².
 (a) Use coordinate vectors to show that these polynomials form basis for P₂.
 - (b) Consider basis $\mathfrak{B} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ for \mathbf{P}_2 . Find \mathbf{q} in \mathbf{P}_2 given that $[\mathbf{q}]_B = \begin{bmatrix} -1\\ 1\\ 2 \end{bmatrix}$.

Section #4.5

• 9. For the subspace
$$H = \left\{ \begin{bmatrix} 2c \\ a-b \\ b-3c \\ a+2b \end{bmatrix} : a, b, c \text{ in } \mathbf{R}, \right\}$$
 find a basis and state the dimension

dimension.

• 10. Determine the dimension of Nul A and Col A for the following matrix:

$$A = \begin{bmatrix} 1 & -6 & 9 & 0 & -2 \\ 0 & 1 & 2 & -4 & 5 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

11. The first four Hermite polynomials are $1, 2t, -2 + 4t^2$ and $-12t + 8t^3$. Show that the first four Hermite polynomials form a basis of \mathbf{P}_3 .

Section #4.6

- 12. If 4×7 matrix A has rank 3, find dim(Nul A), dim(Row A) and $rank A^{T}$.
- 13. If the null space of an 8×5 matrix A is 5-dimensional, what is the dimension of the row space of A?
- 13. Determine whether \vec{w} is in the column space of A, the null space of A, or both, where

• 14. Verify that rank
$$(\vec{u}\vec{v}^T) \le 1$$
 if $\vec{u} = \begin{bmatrix} 2\\ -3\\ 5 \end{bmatrix}$ and $\vec{u} = \begin{bmatrix} a\\ b\\ c \end{bmatrix}$

Section #4.7

- 15. Let \$\mathbf{A} = {\vec{a}_1, \vec{a}_2, \vec{a}_3}\$ and \$\mathbf{B} = {\vec{b}_1, \vec{b}_2, \vec{b}_3}\$ be bases for a vector space \$V\$, and suppose \$\vec{a}_1 = 4\vec{b}_1 \vec{b}_2\$, \$\vec{a}_2 = -\vec{b}_1 + \vec{b}_2 + \vec{b}_3\$ and \$\vec{a}_3 = \vec{b}_2 2\vec{b}_3\$ a) Find change of coordinate matrix from \$\mathbf{A}\$ to \$\mathbf{B}\$.
 b) Find \$[\vec{x}]_{\mathbf{B}\$}\$ for \$\vec{x} = 3\vec{a}_1 + 4\vec{a}_2 + \vec{a}_3\$
- Let \mathfrak{B} and \mathfrak{C} be bases for \mathbb{R}^2 . Find the change of coordinate matrix from \mathfrak{B} to \mathfrak{C} and the change of coordinate matrix from \mathfrak{C} to \mathfrak{B} .

16.

$$\vec{b}_1 = \begin{bmatrix} 7\\5 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} -3\\-1 \end{bmatrix}, \ \vec{c}_1 = \begin{bmatrix} 1\\-5 \end{bmatrix}, \ \vec{c}_2 = \begin{bmatrix} -2\\2 \end{bmatrix}.$$

• 17.

$$\vec{b}_1 = \begin{bmatrix} 6 \\ -12 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \ \vec{c}_1 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \ \vec{c}_2 = \begin{bmatrix} 3 \\ 9 \end{bmatrix}.$$

• 18. Let

$$P = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -5 & 0 \\ 4 & 6 & 1 \end{bmatrix}, \ \vec{v}_1 = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -8 \\ 5 \\ 2 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} -7 \\ 2 \\ 6 \end{bmatrix}.$$

Find a basis $\mathfrak{U} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ such that P is the change of coordinate matrix from $\mathfrak{U} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ to the basis $\mathfrak{V} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.