Homework \# 10

Section \# 4.4

- 1. Find the coordinate vector $[\vec{x}]_{\mathfrak{B}}$ of \vec{x} relative to the given basis $\mathfrak{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\}$,

$$
\vec{b}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-3
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{r}
-3 \\
4 \\
9
\end{array}\right], \vec{b}_{3}=\left[\begin{array}{r}
2 \\
-2 \\
4
\end{array}\right], \vec{x}=\left[\begin{array}{r}
8 \\
-9 \\
6
\end{array}\right] .
$$

- 2. Find the change of coordinate matrix from \mathfrak{B} to the standard basis in \mathbf{R}^{n}.

$$
\mathfrak{B}=\left\{\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right],\left[\begin{array}{r}
2 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right]\right\}
$$

- Use the inverse matrix to find $[\vec{x}]_{\mathfrak{B}}$ for the given \vec{x} and \mathfrak{B}.

3.

$$
\mathfrak{B}=\left\{\left[\begin{array}{r}
1 \\
-2
\end{array}\right],\left[\begin{array}{r}
-3 \\
5
\end{array}\right]\right\}, \vec{x}=\left[\begin{array}{r}
2 \\
-5
\end{array}\right] .
$$

4.

$$
\mathfrak{B}=\left\{\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad\left[\begin{array}{r}
2 \\
-1
\end{array}\right]\right\}, \vec{x}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

- 5. The set $\mathfrak{B}=\left\{1-t^{2}, t-t^{2}, 2-t+t^{2}\right\}$ is a basis for \mathbf{P}_{2}. Find the the coordinate vector $\mathbf{p}(t)=1+3 t-6 t^{2}$ relative to B.
- 6. The vectors $\vec{v}_{1}=\left[\begin{array}{r}1 \\ -3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}2 \\ -8\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}-3 \\ 7\end{array}\right]$ span \mathbf{R}^{2} but do not form a basis. Find two different ways to express $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
- 7. Let $\mathfrak{B}=\left\{\left[\begin{array}{r}1 \\ -4\end{array}\right],\left[\begin{array}{r}-2 \\ 9\end{array}\right]\right\}$. Since the coordinate mapping determined by \mathfrak{B} is the linear transformation from \mathbf{R}^{2} into \mathbf{R}^{2} this mapping must be implemented by some 2×2 matrix A. Find it.
- 8. Let $\mathbf{p}_{1}(t)=1+t^{2}, \mathbf{p}_{2}(t)=1-3 t^{2}, \mathbf{p}_{3}(t)=1+t-3 t^{2}$.
(a) Use coordinate vectors to show that these polynomials form basis for \mathbf{P}_{2}.
(b) Consider basis $\mathfrak{B}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ for \mathbf{P}_{2}. Find \mathbf{q} in \mathbf{P}_{2} given that $[\mathbf{q}]_{B}=\left[\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right]$.

Section \# 4.5

- 9. For the subspace $H=\left\{\left[\begin{array}{c}2 c \\ a-b \\ b-3 c \\ a+2 b\end{array}\right]: a, b, c\right.$ in $\left.\mathbf{R},\right\}$ find a basis and state the dimension.
- 10. Determine the dimension of $N u l A$ and $\operatorname{Col} A$ for the following matrix:

$$
A=\left[\begin{array}{rrrrr}
1 & -6 & 9 & 0 & -2 \\
0 & 1 & 2 & -4 & 5 \\
0 & 0 & 0 & 5 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

11. The first four Hermite polynomials are $1,2 t,-2+4 t^{2}$ and $-12 t+8 t^{3}$. Show that the first four Hermite polynomials form a basis of \mathbf{P}_{3}.

Section \# 4.6

- 12. If 4×7 matrix A has rank 3 , find $\operatorname{dim}(N u l A), \operatorname{dim}(\operatorname{Row} A)$ and $\operatorname{rank} A^{T}$.
- 13. If the null space of an 8×5 matrix A is 5 -dimensional, what is the dimension of the row space of A ?
- 13. Determine whether \vec{w} is in the column space of A, the null space of A, or both, where
- 14. Verify that $\operatorname{rank}\left(\vec{u} \vec{v}^{T}\right) \leq 1$ if $\vec{u}=\left[\begin{array}{r}2 \\ -3 \\ 5\end{array}\right]$ and $\vec{u}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$

Section \# 4.7

- 15. Let $\mathfrak{A}=\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$ and $\mathfrak{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\}$ be bases for a vector space V, and suppose $\vec{a}_{1}=4 \vec{b}_{1}-\vec{b}_{2}, \vec{a}_{2}=-\vec{b}_{1}+\vec{b}_{2}+\vec{b}_{3}$ and $\vec{a}_{3}=\vec{b}_{2}-2 \vec{b}_{3}$
a) Find change of coordinate matrix from \mathfrak{A} to \mathfrak{B}.
b) Find $[\vec{x}]_{\mathfrak{B}}$ for $\vec{x}=3 \vec{a}_{1}+4 \vec{a}_{2}+\vec{a}_{3}$
- Let \mathfrak{B} and \mathfrak{C} be bases for \mathbf{R}^{2}. Find the change of coordinate matrix from \mathfrak{B} to \mathfrak{C} and the change of coordinate matrix from \mathfrak{C} to \mathfrak{B}.

16.

$$
\vec{b}_{1}=\left[\begin{array}{l}
7 \\
5
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right], \vec{c}_{1}=\left[\begin{array}{r}
1 \\
-5
\end{array}\right], \vec{c}_{2}=\left[\begin{array}{r}
-2 \\
2
\end{array}\right] .
$$

- 17.

$$
\vec{b}_{1}=\left[\begin{array}{r}
6 \\
-12
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{l}
4 \\
2
\end{array}\right], \vec{c}_{1}=\left[\begin{array}{l}
4 \\
2
\end{array}\right], \vec{c}_{2}=\left[\begin{array}{l}
3 \\
9
\end{array}\right] .
$$

- 18. Let

$$
P=\left[\begin{array}{rrr}
1 & 2 & -1 \\
-3 & -5 & 0 \\
4 & 6 & 1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{r}
-2 \\
2 \\
3
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}
-8 \\
5 \\
2
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}
-7 \\
2 \\
6
\end{array}\right] .
$$

Find a basis $\mathfrak{U}=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ such that P is the change of coordinate matrix from $\mathfrak{U}=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ to the basis $\mathfrak{V}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

