Math 215 - HW 12
Fall 2014

Print Name
Signature
$\qquad$
$\qquad$

## Homework \# 12

## Section \# 5.3

- 1. Show that if $A$ is both diagonalizable and invertible, then so does $A^{T}$.
- 2. If possible diagonalize following matrices:

$$
A=\left[\begin{array}{rrr}
3 & 1 & -1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
-1 & 3 & -1 \\
-3 & 5 & -1 \\
-3 & 3 & 1
\end{array}\right]
$$

## Section \# 5.4

- 3. Let $\mathfrak{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}\right\}$ and $\mathfrak{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ be bases for vector spaces $V$ and $W$, respectively. Let $T: V \rightarrow W$ be a linear transformation: $T\left(\mathbf{d}_{1}\right)=3 \mathbf{b}_{1}-3 \mathbf{b}_{2}, \quad T\left(\mathbf{d}_{2}\right)=$ $-2 \mathbf{b}_{1}+5 \mathbf{b}_{2}$. Find the matrix for $T$ relative to $\mathfrak{D}$ and $\mathfrak{B}$.
- 4. Let $\mathfrak{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be bases for vector spaces $V$ and let $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation: $T\left(x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+x_{3} \mathbf{b}_{3}\right)=\left[\begin{array}{c}2 x_{1}-3 x_{2}+x_{3} \\ -2 x_{1}+5 x_{3}\end{array}\right]$. Find the matrix for $T$ relative to $\mathfrak{B}$ and the standard basis for $\mathbb{R}^{2}$.
- 5. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $\mathbf{p}(t)+2 t^{2} \mathbf{p}(t)$.
a) Find the image of $\mathbf{p}(t)=3-2 t+t^{2}$
b) Show that $T$ is a linear transformation
c) Find the matrix for $T$ relative to the bases $\mathfrak{T}_{2}=\left\{1, t, t^{2}\right\}$ and $\mathfrak{T}_{4}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.
- 6. Find the $\mathfrak{B}$ matrix for the transformation $x \mapsto A x$, where $\mathfrak{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$

$$
A=\left[\begin{array}{rr}
-6 & -2 \\
4 & 0
\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

- 7. Find the $\mathfrak{B}$ matrix for the transformation $x \mapsto A x$, where $\mathfrak{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ :

$$
A=\left[\begin{array}{rrr}
6 & -2 & -2 \\
3 & 1 & -2 \\
2 & -2 & 2
\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{r}
-1 \\
-1 \\
0
\end{array}\right]
$$

