Homework \# 3

Section \# 1.4

- Use the definition of $A \vec{x}$ to write matrix equation as a vector equation and vice versa.

1.

$$
\left[\begin{array}{rrrr}
1 & 2 & -3 & 1 \\
-2 & -3 & 1 & -1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-4 \\
1
\end{array}\right]
$$

2.

$$
x_{1}\left[\begin{array}{r}
4 \\
-1 \\
7 \\
-4
\end{array}\right]+x_{2}\left[\begin{array}{r}
-5 \\
3 \\
-5 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{r}
7 \\
-8 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
6 \\
-8 \\
0 \\
-7
\end{array}\right]
$$

- 3. Determine if the vector \vec{b} is in the span of the columns of the matrix A

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
10 \\
11 \\
12
\end{array}\right]
$$

- 4. Show that

$$
\mathbf{R}^{2}=\operatorname{span}\left(\left[\begin{array}{l}
3 \tag{0.1}\\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) .
$$

- 5. Describe the span of given vectors.

$$
\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]
$$

- Let

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right]
$$

6. How many rows of A contain a pivot position? Does the equation $A \vec{x}=\vec{b}$ have a solution for each \vec{b} in \mathbf{R}^{4} ?
7. Can each vector in \mathbf{R}^{4} be written as a linear combination of the columns of the matrix A ? Do the columns of A span \mathbf{R}^{4} ?

Section \# 1.5

- 7. Each of the following equations determines a plane in \mathbf{R}^{3}. Do the two planes intersect? If so describe their intersection.

$$
\begin{aligned}
& x_{1}+4 x_{2}-5 x_{3}=0 \\
& 2 x_{1}-x_{2}+8 x_{3}=9
\end{aligned}
$$

- 8. Determine if the system has a nontrivial solution.

$$
\begin{array}{r}
5 x_{1}-3 x_{2}+2 x_{3}=0 \\
-3 x_{1}-4 x_{2}+2 x_{3}=0
\end{array}
$$

- 9. Write the solution set of the given homogeneous system in parametric vector form.

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =0 \\
2 x_{1}+x_{2}-3 x_{3} & =0 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

- 10. Describe and compare the solution sets of $x_{1}+5 x_{2}-3 x_{3}=0$ and $x_{1}+5 x_{2}-3 x_{3}=$ -2 .
- 11. Find the parametric equation of the line through \vec{a} parallel to \vec{b}.

$$
\vec{a}=\left[\begin{array}{r}
-2 \\
0
\end{array}\right], \vec{b}=\left[\begin{array}{r}
-5 \\
3
\end{array}\right]
$$

- 12. Construct a 3×3 matrix A such that the vector

$$
\vec{a}=\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]
$$

is a solution of $A \vec{x}=0$.

