Homework # 3
Section # 1.4

e Use the definition of A7 to write matrix equation as a vector equation and vice versa.
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e 3. Determine if the vector b is in the span of the columns of the matrix A

1 2 3 ) 10
A=|4 561, b= 11
789 12

e 4. Show that

v ([2].]2) o1

e 5. Describe the span of given vectors.
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o Let

1 3 0 3
-1 -1 -1 1
A= 0 -4 2 -8
2 0 3 —1

6. How many rows of A contain a pivot position? Does the equation A7 = b have a
solution for each b in R*?

7. Can each vector in R* be written as a linear combination of the columns of the
matrix A? Do the columns of A span R*?



Section # 1.5

e 7. Each of the following equations determines a plane in R?. Do the two planes
intersect? If so describe their intersection.

[E1—|—4$2—5Qf3:0
21’1—$2+8£L’3:9

e 8. Determine if the system has a nontrivial solution.

5.1’1 — 3I2 -+ 21’3 =0
—31’1 - 41’2 + 2I3 =0

9. Write the solution set of the given homogeneous system in parametric vector form.
[E1—|—2{L’2—3I3:O

21’1+ZE2—3£L‘3:O
—.2131+272 =0

e 10. Describe and compare the solution sets of 21+ 5x9 —3x3 = 0 and x1+ 5xy — 33 =
—2.

e 11. Find the parametric equation of the line through a parallel to b.

=[] 1]

e 12. Construct a 3 x 3 matrix A such that the vector

is a solution of AZ = 0.



