Homework \# 4

Section \# 1.7

- Determine if the columns of the matrix form a linearly independent set. Justify each answer.

1.

$$
\left[\begin{array}{rrr}
0 & -3 & 9 \\
2 & 1 & -7 \\
-1 & 4 & -5 \\
1 & -4 & -2
\end{array}\right]
$$

2.

$$
\left[\begin{array}{rrrr}
1 & -2 & 3 & 2 \\
-2 & 4 & -6 & 2 \\
0 & 1 & -1 & 3
\end{array}\right]
$$

- Find the values of h for which the vectors are linearly dependent. Justify each answer. 3.

$$
\left[\begin{array}{r}
3 \\
-6 \\
1
\end{array}\right],\left[\begin{array}{r}
-6 \\
4 \\
-3
\end{array}\right],\left[\begin{array}{l}
9 \\
h \\
3
\end{array}\right]
$$

4.

$$
\left[\begin{array}{r}
1 \\
5 \\
-3
\end{array}\right],\left[\begin{array}{r}
-2 \\
-9 \\
6
\end{array}\right], \quad\left[\begin{array}{r}
3 \\
h \\
-9
\end{array}\right]
$$

- 5. How many pivot columns must 6×4 matrix have if its columns span \mathbf{R}^{4} ? Why?
- 6. Find a nontrivial solution of the equation $A \vec{x}=\overrightarrow{0}$,

$$
A=\left[\begin{array}{rrr}
2 & 3 & 5 \\
-5 & 1 & -4 \\
-3 & -1 & -4 \\
1 & 0 & 1
\end{array}\right]
$$

- 7. Use as many columns of A as possible to construct matrix B with the property that the equation $B \vec{x}=\overrightarrow{0}$ has only the trivial solution. Solve $B \vec{x}=\overrightarrow{0}$ to verify your work. Here A is defined as follows:

$$
A=\left[\begin{array}{rrrrr}
3 & -4 & 10 & 7 & -4 \\
-5 & -3 & -7 & -11 & 15 \\
4 & 3 & 5 & 2 & 1 \\
8 & -7 & 23 & 4 & 15
\end{array}\right] .
$$

8. With A and B as in exercise 7. select a column \vec{v} of A that was not used in the construction of B and determine if \vec{v} is in the set spanned by the columns of B. Describe your calculations.

Section \# 1.8

- 9. Transformation T is defined by $T(\vec{x})=A \vec{x}$, find a vector \vec{x} whose image under T is \vec{b} and determine if \vec{x} is unique.

$$
A=\left[\begin{array}{rrr}
1 & 0 & -3 \\
-3 & 1 & 6 \\
2 & -2 & -1
\end{array}\right], \vec{b}=\left[\begin{array}{r}
-2 \\
3 \\
-1
\end{array}\right]
$$

- 10. Let $\vec{b}=\left[\begin{array}{r}-1 \\ 3 \\ -1 \\ 4\end{array}\right]$ and $A=\left[\begin{array}{rrrr}3 & 2 & 10 & -6 \\ 1 & 0 & 2 & -4 \\ 0 & 1 & 2 & 3 \\ 1 & 4 & 10 & 8\end{array}\right]$. Is \vec{b} in the range of the linear transformation $\vec{x} \mapsto \vec{A} \vec{x}$? Why or why not.
- Use a rectangular coordinate system to plot $\vec{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$ under given transformation T. Make a sketch and describe geometrically what T does to each vector \vec{x} in \mathbf{R}^{2}.

11.

$$
T(\vec{x})=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

12.

$$
T(\vec{x})=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

13.

$$
T(\vec{x})=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Section \# 1.9

- Assume that T is a linear transformation and find the standard matrix of T.

14. $T: \mathbf{R}^{2} \mapsto \mathbf{R}^{4}, T\left(\vec{e}_{1}\right)=(3,1,3,1)$ and $T\left(\vec{e}_{2}\right)=(-5,2,0,0)$, where $\vec{e}_{1}=(1,0)$ and $\overrightarrow{e_{2}}=(0,1)$.
15. $T: \mathbf{R}^{3} \mapsto \mathbf{R}^{2}, T\left(\vec{e}_{1}\right)=(1,4), T\left(\vec{e}_{2}\right)=(-2,9)$ and $T\left(\vec{e}_{3}\right)=(-3,8)$, where $\vec{e}_{1}=(1,0,0), \vec{e}_{2}=(0,1,0)$ and $\vec{e}_{3}=(0,0,1)$.
16. $T: \mathbf{R}^{2} \mapsto \mathbf{R}^{2}$, reflects points through the horizontal $x_{1}-$ axis and then reflects points through the line $x_{2}=x_{1}$.

- Let T be a linear transformation whose standard matrix matrix is given. Decide if T is one-to-one mapping. Justify your answers.

17.

$$
A=\left[\begin{array}{rrrr}
-5 & 6 & -5 & -6 \\
8 & 3 & -3 & 8 \\
2 & 9 & 5 & -12 \\
-3 & 2 & 7 & -12
\end{array}\right]
$$

18.

$$
A=\left[\begin{array}{rrrr}
7 & 5 & 9 & -9 \\
5 & 6 & 4 & -4 \\
4 & 8 & 0 & 7 \\
-6 & -6 & 6 & 5
\end{array}\right]
$$

