Homework # 4

Section # 1.7

• Determine if the columns of the matrix form a linearly independent set. Justify each answer.

1.

- $\begin{bmatrix} 0 & -3 & 9 \\ 2 & 1 & -7 \\ -1 & 4 & -5 \\ 1 & -4 & -2 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & -2 & 3 & 2 \\ -2 & 4 & -6 & 2 \\ 0 & 1 & -1 & 3 \end{bmatrix}$
- Find the values of h for which the vectors are linearly dependent. Justify each answer.
 3.

4.	$\begin{bmatrix} 3\\-6\\1 \end{bmatrix}, \begin{bmatrix} -6\\4\\-3 \end{bmatrix}, \begin{bmatrix} 9\\h\\3 \end{bmatrix}$
	$\begin{bmatrix} 1\\5\\-3 \end{bmatrix}, \begin{bmatrix} -2\\-9\\6 \end{bmatrix}, \begin{bmatrix} 3\\h\\-9 \end{bmatrix}$

- 5. How many pivot columns must 6×4 matrix have if its columns span \mathbb{R}^4 ? Why?
- 6. Find a nontrivial solution of the equation $A\vec{x} = \vec{0}$,

$$A = \begin{bmatrix} 2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1 \end{bmatrix}.$$

• 7. Use as many columns of A as possible to construct matrix B with the property that the equation $B\vec{x} = \vec{0}$ has only the trivial solution. Solve $B\vec{x} = \vec{0}$ to verify your work. Here A is defined as follows:

$$A = \begin{bmatrix} 3 & -4 & 10 & 7 & -4 \\ -5 & -3 & -7 & -11 & 15 \\ 4 & 3 & 5 & 2 & 1 \\ 8 & -7 & 23 & 4 & 15 \end{bmatrix}$$

•

8. With A and B as in exercise 7. select a column \vec{v} of A that was not used in the construction of B and determine if \vec{v} is in the set spanned by the columns of B. Describe your calculations.

Section # 1.8

• 9. Transformation T is defined by $T(\vec{x}) = A\vec{x}$, find a vector \vec{x} whose image under T is \vec{b} and determine if \vec{x} is unique.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -3 & 1 & 6 \\ 2 & -2 & -1 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}$$

• 10. Let $\vec{b} = \begin{bmatrix} -1 \\ 3 \\ -1 \\ 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 2 & 10 & -6 \\ 1 & 0 & 2 & -4 \\ 0 & 1 & 2 & 3 \\ 1 & 4 & 10 & 8 \end{bmatrix}$. Is \vec{b} in the range of the linear

transformation $\overline{\vec{x}} \mapsto A\overline{\vec{x}}$? Why or why not.

• Use a rectangular coordinate system to plot $\vec{u} = \begin{bmatrix} 5\\2 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2\\4 \end{bmatrix}$ under given transformation T. Make a sketch and describe geometrically what T does to each vector \vec{x} in \mathbf{R}^2 .

11.			
12.			

$$T(\vec{x}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$
$$T(\vec{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

13.

$$T(\vec{x}) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right].$$

Section # 1.9

• Assume that T is a linear transformation and find the standard matrix of T.

14. $T : \mathbf{R}^2 \mapsto \mathbf{R}^4$, $T(\vec{e_1}) = (3, 1, 3, 1)$ and $T(\vec{e_2}) = (-5, 2, 0, 0)$, where $\vec{e_1} = (1, 0)$ and $\vec{e_2} = (0, 1)$.

15. $T : \mathbf{R}^3 \to \mathbf{R}^2$, $T(\vec{e_1}) = (1,4)$, $T(\vec{e_2}) = (-2,9)$ and $T(\vec{e_3}) = (-3,8)$, where $\vec{e_1} = (1,0,0)$, $\vec{e_2} = (0,1,0)$ and $\vec{e_3} = (0,0,1)$.

16. $T : \mathbf{R}^2 \mapsto \mathbf{R}^2$, reflects points through the horizontal x_1 - axis and then reflects points through the line $x_2 = x_1$.

• Let T be a linear transformation whose standard matrix matrix is given. Decide if T is one-to-one mapping. Justify your answers.

17.

18.

$$A = \begin{bmatrix} -5 & 6 & -5 & -6 \\ 8 & 3 & -3 & 8 \\ 2 & 9 & 5 & -12 \\ -3 & 2 & 7 & -12 \end{bmatrix}.$$
$$A = \begin{bmatrix} 7 & 5 & 9 & -9 \\ 5 & 6 & 4 & -4 \\ 4 & 8 & 0 & 7 \\ -6 & -6 & 6 & 5 \end{bmatrix}.$$