Homework \# 6

Section \# 2.2

- 1. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Show that equation $A X=B$ has a unique solution $A^{-1} B$.
- 2. Show that if A is invertible and D satisfies $A D=I$, then $D=A^{-1}$.
- 3. Suppose $A B=A C$, where B and C are $n \times p$ matrices and A is invertible. Show that $B=C$. Determine if it is true when A is not invertible.
- 4. Show that if $a d-b c=0$, then the equation $A \vec{x}=0$ has more than one solution. Here A is defined as follows:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

- Find the inverses of the matrices if they exists.

5.

$$
\left[\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right]
$$

6.

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4
\end{array}\right]
$$

- 7. Let $A=\left[\begin{array}{rrr}1 & -7 & -3 \\ 2 & 15 & 6 \\ 1 & 3 & 2\end{array}\right]$. Find the third column of A^{-1} without computing the other columns.

Section \# 2.3

- 8. Determine if $A=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$ is invertible.
- Determine which of the following matrices are invertible. Use as few calculations as possible. Justify your answer.

9.

$$
\left[\begin{array}{rr}
5 & 7 \\
-3 & -6
\end{array}\right]
$$

10.

$$
\left[\begin{array}{rrr}
3 & 0 & 0 \\
-3 & -4 & 0 \\
8 & 5 & -3
\end{array}\right]
$$

11.

$$
\left[\begin{array}{rrrr}
-1 & -3 & 0 & 1 \\
3 & 5 & 8 & -3 \\
-2 & -6 & 3 & 2 \\
0 & -1 & 2 & 1
\end{array}\right]
$$

- 12. Can a square matrix with two identical rows be invertible? Why or why not?
- 13. Assume that A is $n \times n$ matrix. If the equation $A \vec{x}=\vec{y}$ is inconsistent for some \vec{y} in \mathbf{R}^{n}, what can you say about the equation $A \vec{x}=0$. Why?
- 14. If A is an $n \times n$ matrix and transformation $\vec{x} \mapsto A \vec{x}$ is one-to-one, what else can you say about this transformation? Justify your answer.
- Show that T is invertible and find a formula for T^{-1}.

15. $T\left(x_{1}, x_{2}\right)=\left(-5 x_{1}+9 x_{2}, 4 x_{1}-7 x_{2}\right)$
16. $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-8 x_{2},-2 x_{1}+7 x_{2}\right)$

- 17. Explain why the columns of A^{2} span \mathbf{R}^{n} whenever the columns of $n \times n$ matrix A are linearly independent.

