Homework # 6

Section # 2.2

- 1. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Show that equation AX = B has a unique solution $A^{-1}B$.
- 2. Show that if A is invertible and D satisfies AD = I, then $D = A^{-1}$.
- 3. Suppose AB = AC, where B and C are $n \times p$ matrices and A is invertible. Show that B = C. Determine if it is true when A is not invertible.
- 4. Show that if ad bc = 0, then the equation $A\vec{x} = 0$ has more than one solution. Here A is defined as follows:

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

• Find the inverses of the matrices if they exists.

5.

$$\left[\begin{array}{rrr}1 & -3\\4 & -9\end{array}\right]$$

6.

$$\left[\begin{array}{rrrr} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{array}\right]$$

• 7. Let $A = \begin{bmatrix} 1 & -7 & -3 \\ 2 & 15 & 6 \\ 1 & 3 & 2 \end{bmatrix}$. Find the third column of A^{-1} without computing the other columns

other columns.

Section # 2.3

- 8. Determine if $A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$ is invertible.
- Determine which of the following matrices are invertible. Use as few calculations as possible. Justify your answer.

9.

$$\left[\begin{array}{rrr} 5 & 7 \\ -3 & -6 \end{array}\right]$$

10.

11.

$$\begin{bmatrix} 3 & 0 & 0 \\ -3 & -4 & 0 \\ 8 & 5 & -3 \end{bmatrix}$$
$$\begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix}$$

- 12. Can a square matrix with two identical rows be invertible? Why or why not?
- 13. Assume that A is $n \times n$ matrix. If the equation $A\vec{x} = \vec{y}$ is inconsistent for some \vec{y} in \mathbf{R}^n , what can you say about the equation $A\vec{x} = 0$. Why?
- 14. If A is an $n \times n$ matrix and transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one, what else can you say about this transformation? Justify your answer.
- Show that T is invertible and find a formula for T^{-1} .

15.
$$T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 - 7x_2)$$

16. $T(x_1, x_2) = (2x_1 - 8x_2, -2x_1 + 7x_2)$

• 17. Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of $n \times n$ matrix A are linearly independent.