Homework \# 7

Section \# 2.3

- 1. Let A and B be $n \times n$ matrices. Show that if $A B$ is invertible so is B.
- T is a linear transformation from \mathbf{R}^{2} into \mathbf{R}^{2}. Show that T is invertible and find formula for T^{-1}.

2. $T\left(x_{1}, x_{2}\right)=\left(-5 x_{1}+9 x_{2}, 4 x_{1}-7 x_{2}\right)$
3. $T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-8 x_{2},-2 x_{1}+7 x_{2}\right)$

Section \# 2.4

- Find formulas for X, Y, and Z in terms of A, B, and C. Justify your calculations.

4.

$$
\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]\left[\begin{array}{rr}
I & 0 \\
X & Y
\end{array}\right]=\left[\begin{array}{ll}
0 & I \\
Z & 0
\end{array}\right]
$$

5.

$$
\left[\begin{array}{cc}
A & B \\
0 & I
\end{array}\right]\left[\begin{array}{rrr}
X & Y & Z \\
0 & 0 & I
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & 0 & I
\end{array}\right] .
$$

- 6. The inverse of

$$
\left[\begin{array}{ccc}
I & 0 & 0 \\
A & I & 0 \\
B & D & I
\end{array}\right] \text { is }\left[\begin{array}{ccc}
I & 0 & 0 \\
P & I & 0 \\
Q & R & I
\end{array}\right]
$$

Find P, Q, and R.

- 7.

a. Verify that $A^{2}=I$ when $A=\left[\begin{array}{rr}1 & 0 \\ 2 & -1\end{array}\right]$.
b. Use partitioned matrices to show that $M^{2}=I$ when $A^{2}=I$ when

$$
M=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -2 & 1
\end{array}\right]
$$

- 8. Without using row reduction, find the inverse of

$$
A=\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
3 & 5 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 7 & 8 \\
0 & 0 & 0 & 5 & 6
\end{array}\right]
$$

Section \# 2.5

- 9. Solve the equations using $L U$ factorization given for A.

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
3 & -7 & -2 \\
-3 & 5 & 1 \\
6 & -4 & 0
\end{array}\right], \vec{b}=\left[\begin{array}{r}
-7 \\
5 \\
2
\end{array}\right] \\
& A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -5 & 1
\end{array}\right]\left[\begin{array}{rrr}
3 & -7 & -2 \\
0 & -2 & -1 \\
0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

- Find $L U$ factorization of the following matrices (with L unit lower triangular).

10.

$$
\left[\begin{array}{rr}
2 & 5 \\
-3 & 4
\end{array}\right]
$$

11.

$$
\left[\begin{array}{rrr}
2 & 3 & 2 \\
4 & 13 & 9 \\
-6 & 5 & 4
\end{array}\right]
$$

12.

$$
\left[\begin{array}{rrrr}
2 & 0 & 5 & 2 \\
-6 & 3 & -13 & -3 \\
4 & 9 & 16 & 17
\end{array}\right]
$$

Section \# 2.8

- 13. Let $A=\left[\begin{array}{rrr}1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3\end{array}\right]$ and $\vec{u}=\left[\begin{array}{r}-7 \\ 3 \\ 2\end{array}\right]$. Is \vec{u} in $N u l(A)$? Justify each answer.
- 14. Given $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, find a vector in $\operatorname{Nul}(A)$ and a vector in $\operatorname{Col}(A)$.
- 15. Let $\vec{v}_{1}=\left[\begin{array}{r}1 \\ 3 \\ -4\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}-2 \\ -3 \\ 7\end{array}\right]$, and $\vec{w}=\left[\begin{array}{r}-3 \\ -3 \\ 10\end{array}\right]$. Determine if \vec{w} is in the subspace of \mathbf{R}^{3} generated by \vec{v}_{1} and \vec{v}_{2}.
- 16. For A given below find a nonzero vector in $\operatorname{Nul}(A)$ and a nonzero vector in $\operatorname{Col}(A)$.

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
4 & 5 & 7 \\
-5 & -1 & 0 \\
2 & 7 & 11 \\
3 & 3 & 4
\end{array}\right]
$$

- Determine which sets are bases for \mathbf{R}^{2} or \mathbf{R}^{3}. Justify each answer.

17. $\left[\begin{array}{r}-2 \\ 5\end{array}\right],\left[\begin{array}{r}4 \\ 10\end{array}\right]$
18. $\left[\begin{array}{r}1 \\ -6 \\ -7\end{array}\right],\left[\begin{array}{r}3 \\ -6 \\ 7\end{array}\right],\left[\begin{array}{r}-3 \\ 7 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 7 \\ 9\end{array}\right]$.
