Homework \# 8

Section \# 2.9

- 1. Find the vector \vec{x} determined by the given coordinate vector $[\vec{x}]_{\mathfrak{B}}$ and the given basis \mathfrak{B}.

$$
\mathfrak{B}=\left\{\left[\begin{array}{r}
-3 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\},[\vec{x}]_{\mathfrak{B}}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] .
$$

- The vector \vec{x} is in a subspace H with a basis $\mathfrak{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$. Find the \mathfrak{B}-coordinate vector of \vec{x}.

2. $\vec{b}_{1}=\left[\begin{array}{r}1 \\ -5\end{array}\right], \vec{b}_{2}=\left[\begin{array}{r}-2 \\ 3\end{array}\right], \vec{x}=\left[\begin{array}{l}1 \\ 9\end{array}\right]$
3. $\vec{b}_{1}=\left[\begin{array}{r}-3 \\ 2 \\ -4\end{array}\right], \vec{b}_{2}=\left[\begin{array}{r}7 \\ -3 \\ 5\end{array}\right], \vec{x}=\left[\begin{array}{r}5 \\ 0 \\ -2\end{array}\right]$

- 4. The matrix A and an echelon form of A have following forms:

$$
A=\left[\begin{array}{rrrrr}
1 & -2 & -1 & 5 & 4 \\
2 & -1 & 1 & 5 & 6 \\
-2 & 0 & -2 & 1 & -6 \\
3 & 1 & 4 & 1 & 5
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & -2 & -1 & 2 & 0 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Find bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$ and then state the dimensions of these subspaces.

- 5. Find a basis for the subspace spanned by the the given vectors. What is the dimension of the subspace?

$$
\left[\begin{array}{r}
1 \\
-3 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{r}
-3 \\
9 \\
-6 \\
12
\end{array}\right],\left[\begin{array}{r}
2 \\
-1 \\
4 \\
2
\end{array}\right],\left[\begin{array}{r}
-4 \\
5 \\
-3 \\
7
\end{array}\right]
$$

- 6. If the subspace of all solutions of $A \vec{x}=0$ has a basis consisting of three vectors and if A is a 5×7 matrix, what is the rank of A ? Justify your answer.
- 7. Construct a 3×4 matrix with rank 1 . Justify your answer.
- 8. Let $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $\mathfrak{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. Show that \vec{x} is in H, and find the \mathfrak{B}-coordinate vector of \vec{x}, when

$$
\vec{v}_{1}=\left[\begin{array}{r}
15 \\
-5 \\
12 \\
7
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}
14 \\
-10 \\
13 \\
17
\end{array}\right], \vec{x}=\left[\begin{array}{r}
16 \\
0 \\
11 \\
-3
\end{array}\right] .
$$

Section \# 3.1

- 9. Compute the determinant using co-factor expansion across the first row.

$$
\left[\begin{array}{rrr}
2 & -4 & 3 \\
3 & 1 & 2 \\
1 & 4 & -1
\end{array}\right]
$$

- 10. Compute the determinant by co-factor expansions. At each step, choose a row or column that involves the least amount of computations.

$$
\left|\begin{array}{rrrrr}
6 & 3 & 2 & 4 & 0 \\
9 & 0 & -4 & 1 & 0 \\
8 & -5 & 6 & 7 & 1 \\
3 & 0 & 0 & 0 & 0 \\
4 & 2 & 3 & 2 & 0
\end{array}\right| .
$$

- 11. State the row operation and describe how it affects the determinant.

$$
\left[\begin{array}{cc}
3 & 4 \\
5 & 6
\end{array}\right],\left[\begin{array}{cc}
3 & 4 \\
5+3 k & 6+4 k
\end{array}\right]
$$

Section \# 3.2

- 12. Find the determinant by row reduction to echelon form.

$$
\left|\begin{array}{rrrr}
1 & 3 & 0 & 2 \\
-2 & -5 & 7 & 4 \\
3 & 5 & 2 & 1 \\
1 & -1 & 2 & -3
\end{array}\right|
$$

- 13. Find the determinant

$$
\left|\begin{array}{ccc}
a & b & c \\
2 d+a & 2 e+b & 2 f+c \\
g & h & i
\end{array}\right|
$$

- 14. Use the determinant to decide if the set of vectors is linearly independent.

$$
\left[\begin{array}{r}
7 \\
-4 \\
-6
\end{array}\right],\left[\begin{array}{r}
-8 \\
5 \\
7
\end{array}\right],\left[\begin{array}{r}
7 \\
0 \\
-5
\end{array}\right] .
$$

Section \# 3.3

- 15. Use Cramer's rule to compute the solution of the following system:

$$
\left\{\begin{array}{ccc}
3 x_{1}-2 x_{2} & = & 7 \\
-5 x_{1}+6 x_{2} & = & -5
\end{array}\right.
$$

- 16. Compute the adjugate and find the inverse of the following matrix:

$$
\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right] .
$$

- 17. Find the volume of parallelepiped with one vortex at the origin and adjacent vertices at $(1,0,-2),(1,2,4)$ and $(7,1,0)$.

