Homework # 9

Section # 3.3

- 1. Let S be the parallelogram determined by the vectors $\vec{b}_1 = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and let $A = \begin{bmatrix} 6 & -2 \\ -3 & 2 \end{bmatrix}$. Compute the area of the image of S under the mapping $\vec{x} \mapsto A\vec{x}$.
- 2. Find a formula for the area of the triangle whose vertices are $\vec{0}$, $\vec{v_1}$ and $\vec{v_2}$ in \mathbf{R}^2 .
- 3. Let R be the triangle with vertices at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . Show that area of triangle S_{Δ} :

$$S_{\Delta} = \frac{1}{2} det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}.$$

Section #4.1

- 4. Let *H* be the set of the points inside and on the unit circle in the *x*, *y* plane: $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}.$ Show that *H* is not a subspace of \mathbb{R}^2 .
- Determine if given set is a subspace of \mathbf{P}_n for an appropriate value of n. Justify answer.
 - **5.** All polynomials of the form $\mathbf{p}(t) = a + t^2$, where a is in **R**.
 - 6. All polynomials of of degree at most 3, with integers as coefficients.
 - 7. All polynomials in \mathbf{P}_n such that $\mathbf{p}(0) = 0$.
- 8. Let W be the set of all vectors of the form $\begin{bmatrix} 2s + 4t \\ 2s \\ 2s 3t \\ 5t \end{bmatrix}$. Show that W is a subspace

of \mathbf{R}^4 .

- 9. Determine if the set *H* of all matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ is a subspace of $M_{2\times 2}$
- 10. Determine if \vec{y} is in the subspace of \mathbf{R}^4 spanned by the columns of A, where

$$\vec{y} = \begin{bmatrix} -4\\ -8\\ 6\\ -5 \end{bmatrix}, \ A = \begin{bmatrix} 3 & -5 & -9\\ 8 & 7 & -6\\ -5 & -8 & 3\\ 2 & -2 & -9 \end{bmatrix}$$

Section #4.2

- 11. Determine if $\vec{w} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ is in Nul A, where $A = \begin{bmatrix} 2 & 6 & 4 \\ -3 & 2 & 5 \\ -5 & -4 & 1 \end{bmatrix}.$
- 12. Find A such that the given set is Col A.

$$\left\{ \begin{bmatrix} 2s+t\\ r-s+2t\\ 3r+s\\ 2r-s-t \end{bmatrix} : r,s,t \ real \right\}.$$

• 13. Determine whether \vec{w} is in the column space of A, the null space of A, or both, where

$$\vec{w} = \begin{bmatrix} 1\\1\\-1\\-3 \end{bmatrix}, \quad A = \begin{bmatrix} 7 & 6 & -4 & 1\\-5 & -1 & 0 & -2\\9 & -11 & 7 & -3\\19 & -9 & 7 & 1 \end{bmatrix}.$$

Section #4.3

• 14. Find bases for the null spaces of the following matrices:

$$\begin{bmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & 1 & 4 \\ 3 & -1 & -7 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 & -2 & 1 & 5 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & -8 & 0 & 16 \end{bmatrix}.$$

- 15. Find a basis for the set of vectors in \mathbf{R}^3 in the plane x 3y + 2z = 0.
- 16. Let $\vec{v}_1 = \begin{bmatrix} 4 \\ -3 \\ 7 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 9 \\ -2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix}$, and also let $H = Span\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$. Verify that $4\vec{v}_1 + 5\vec{v}_2 - 3\vec{v}_3 = \vec{0}$ and find a basis for H.
- 17. Let $H = Span\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ and $K = Span\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, where

$$\vec{u}_1 = \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 0\\2\\-1\\1 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 3\\4\\1\\-4 \end{bmatrix},$$

$$\vec{v}_1 = \begin{bmatrix} -2\\ -2\\ -1\\ 3 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 2\\ 3\\ 2\\ -6 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} -1\\ 4\\ 6\\ -2 \end{bmatrix},$$

Find bases for H, K, and H + K.