Homework \# 9

Section \# 3.3

- 1. Let S be the parallelogram determined by the vectors $\vec{b}_{1}=\left[\begin{array}{r}-2 \\ 3\end{array}\right], \vec{b}_{2}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$, and let $A=\left[\begin{array}{rr}6 & -2 \\ -3 & 2\end{array}\right]$. Compute the area of the image of S under the mapping $\vec{x} \mapsto A \vec{x}$.
- 2. Find a formula for the area of the triangle whose vertices are $\overrightarrow{0}, \vec{v}_{1}$ and \vec{v}_{2} in \mathbf{R}^{2}.
- 3. Let R be the triangle with vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$. Show that area of triangle S_{Δ} :

$$
S_{\Delta}=\frac{1}{2} \operatorname{det}\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]
$$

Section \# 4.1

- 4. Let H be the set of the points inside and on the unit circle in the x, y plane: $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x^{2}+y^{2} \leq 1\right\}$. Show that H is not a subspace of \mathbf{R}^{2}.
- Determine if given set is a subspace of \mathbf{P}_{n} for an appropriate value of n. Justify answer.

5. All polynomials of the form $\mathbf{p}(t)=a+t^{2}$, where a is in \mathbf{R}.
6. All polynomials of of degree at most 3, with integers as coefficients.
7. All polynomials in \mathbf{P}_{n} such that $\mathbf{p}(0)=0$.

- 8. Let W be the set of all vectors of the form $\left[\begin{array}{c}2 s+4 t \\ 2 s \\ 2 s-3 t \\ 5 t\end{array}\right]$. Show that W is a subspace of \mathbf{R}^{4}.
- 9. Determine if the set H of all matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ is a subspace of $M_{2 \times 2}$
- 10. Determine if \vec{y} is in the subspace of \mathbf{R}^{4} spanned by the columns of A, where

$$
\vec{y}=\left[\begin{array}{r}
-4 \\
-8 \\
6 \\
-5
\end{array}\right], A=\left[\begin{array}{rrr}
3 & -5 & -9 \\
8 & 7 & -6 \\
-5 & -8 & 3 \\
2 & -2 & -9
\end{array}\right] .
$$

Section \# 4.2

- 11. Determine if $\vec{w}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ is in Nul A, where

$$
A=\left[\begin{array}{rrr}
2 & 6 & 4 \\
-3 & 2 & 5 \\
-5 & -4 & 1
\end{array}\right]
$$

- 12. Find A such that the given set is $C o l A$.

$$
\left\{\left[\begin{array}{c}
2 s+t \\
r-s+2 t \\
3 r+s \\
2 r-s-t
\end{array}\right]: r, s, t \text { real }\right\}
$$

- 13. Determine whether \vec{w} is in the column space of A, the null space of A, or both, where

$$
\vec{w}=\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-3
\end{array}\right], \quad A=\left[\begin{array}{rrrr}
7 & 6 & -4 & 1 \\
-5 & -1 & 0 & -2 \\
9 & -11 & 7 & -3 \\
19 & -9 & 7 & 1
\end{array}\right]
$$

Section \# 4.3

- 14. Find baeses for the null spaces of the following matrices:

$$
\left[\begin{array}{rrrr}
1 & 0 & -2 & -2 \\
0 & 1 & 1 & 4 \\
3 & -1 & -7 & 3
\end{array}\right], \quad\left[\begin{array}{rrrrr}
1 & 1 & -2 & 1 & 5 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & -8 & 0 & 16
\end{array}\right] .
$$

- 15. Find a basis for the set of vectors in \mathbf{R}^{3} in the plane $x-3 y+2 z=0$.
- 16. Let $\vec{v}_{1}=\left[\begin{array}{r}4 \\ -3 \\ 7\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}1 \\ 9 \\ -2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}7 \\ 11 \\ 6\end{array}\right]$, and also let $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$. Verify that $4 \vec{v}_{1}+5 \vec{v}_{2}-3 \vec{v}_{3}=\overrightarrow{0}$ and find a basis for H.
- 17. Let $H=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ and $K=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, where

$$
\vec{u}_{1}=\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{r}
0 \\
2 \\
-1 \\
1
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{r}
3 \\
4 \\
1 \\
-4
\end{array}\right]
$$

$$
\vec{v}_{1}=\left[\begin{array}{r}
-2 \\
-2 \\
-1 \\
3
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{r}
2 \\
3 \\
2 \\
-6
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{r}
-1 \\
4 \\
6 \\
-2
\end{array}\right],
$$

Find bases for H, K, and $H+K$.

