Network Theory and Text Analysis

Christina West, Taylor Martins, Yihe Hao

with help from: Jerry Luo and Dr. Gabitov

Introduction

- Network Theory has been widely used and broadly researched to analyze various networks.
- Category of networks: Social, Fictional, Biological, electrical and Financial
- With a proper analysed mathematical model, we are able to compare important parameters between networks from a different field
- We are also able to conclude whether there's any similarities in between
- Successful implementation of this project allows the qualitative components of network to be determined quantitatively

What we have done

- Develop network tree in order to aid visualization of the networking system
- Plot Degree Distribution within the networking system.
- Construct, modify and analyze the model in which we've chosen
- Calculate coefficients within each network
- Stories Picked: Harry Potter & Star Wars (Episode IV)

Igraph Package in R

- Igraph is a convenient software built within R
- With the use of Igraph, we are able to plot the degree distribution and visualize network tree
- Command to summon Igraph in R-Script

```
install.packages("igraph")
install.packages("poweRlaw")
library(igraph)
library(poweRlaw)
```

Sample Look of the CSV file (Edges)

	A	В	C
1		target	weight
2	C-3P0	R2-D2	17
3	LUKE	R2-D2	13
4	OBI-WAN	R2-D2	6
5	LEIA	R2-D2	5
6	HAN	R2-D2	5
7	CHEWBACCA	R2-D2	3
8	DODONNA	R2-D2	1
9	CHEWBACCA	OBI-WAN	7
10	C-3PO	CHEWBACCA	5
11	CHEWBACCA	LUKE	16
12	CHEWBACCA	HAN	19
13	CHEWBACCA	LEIA	11
14	CHEWBACCA	DARTH VAL	1
15	CHEWBACCA	DODONNA	1
16	CAMIE	LUKE	2
17	BIGGS	CAMIE	2
18	BIGGS	LUKE	4
19	DARTH VAL	LEIA	1
20	BERU	LUKE	3
21	BERU	OWEN	3
22	BERU	C-3P0	2
23	LUKE	OWEN	3
24	C-3P0	LUKE	18
25	C-3P0	OWEN	2
26	C-3P0	LEIA	6
07	TETA	THE	17

P. (2016, January 20). ablobarbera/data-science-workshop.

1	A	В	
1	Label	link	
2	Hannah Abbott	Hannah_Abbott	
3	Ludo Bagman	Ludo_Bagman	
4	Bathilda Bagshot	Bathilda_Bagshot	
5	Katie Bell	Katie_Bell	
6	Cuthbert Binns	Cuthbert_Binns	
7	Regulus Black	Regulus_Black	
8	Sirius Black	Sirius_Black	
9	Amelia Bones	Amelia_Bones	
10	Susan Bones	Susan_Bones	
11	Terry Boot	Terry_Boot	
12	Lavender Brown	Lavender_Brown	
13	Millicent Bulstrode	Millicent_Bulstrode	
14	Charity Burbage	Charity_Burbage	
15	Frank Bryce	Frank_Bryce	
16	Alecto Carrow	Alecto_Carrow	
17	Amycus Carrow	Amycus_Carrow	
18	Reginald Cattermole	Reginald_Cattermole	
19	Mary Cattermole	Mary_Cattermole	
20	Cho Chang	Cho_Chang	
21	Penelope Clearwater	Penelope_Clearwater	
22	Michael Corner	Michael_Corner	
23	Vincent Crabbe, Sr.	Crabbe	
24	Vincent Crabbe	Vincent_Crabbe	
25	Colin Creevey	Colin_Creevey	

D.(2014, November 5). Dpmartin 42/Networks

Network Graph

Star Wars Communities (Episode IV)

Network Graph

Harry Potter Communities

communities formed using short random walks (10)

Network Graph

PoweRlaw Package to Fit Distribution

- Contains functions for fitting power laws and other heavy tailed distributions. Overall provides an approach for fitting power laws to data sets.
- Bootstrapping
 - randomly sampling with replacement from a dataset
 - the randomly generated resample is used to make an inference about the original sample
- Vuong Closeness Test
 - a ratio of the log likelihood functions of each distribution
 - the sign of the statistic indicates which model is better

Pagel, Mark & Meade, Andrew & Scott,
Daniel. (2007). Assembly rules for
protein networks derived from
phylogenetic-statistical analysis of
whole genomes. BMC evolutionary
biology. 7 Suppl 1. S16.
10.1186/1471-2148-7-S1-S16.

Why Power Law?

A network fit to a power law distribution is more representative of a "real world network."

A network fit to an exponential distribution is more representative of a "fictional network."

Pareto Principle - 80% of effects come from 20% of causes. Power law shows long tail and few who dominate.

How We Calculate Coefficients

Assortativity - Measures Homophyly

$$a = \frac{\sum (jk(e(j,k) - q(j)q(k)), j, k)}{\sigma(q)^2}$$

Clustering Coefficient - Measures Transitivity

$$c = \frac{|e_{jk} : v_j, v_k \epsilon N_i, e_{jk} \epsilon E)}{k_i (k_i - 1)}$$

Betweenness Centrality - Number of shortest paths

$$r = \sum \left(\frac{\sigma_{st}(v)}{\sigma_{st}}\right)$$

Giant Component - Role of influential vertices

$$g = \frac{max(components)}{N}$$

Model

	Star Wars Episode IV	Harry Potter	Congress Twitter Network	Random Networks (Star Wars HP Congress)
Number of nodes	22 (60 edges)	65 (513 edges)	517 (61766 edges)	22 65 517
Diameter	3	4	3	3 3 2
Characteristic path length	1.9095	2.0284	1.66	1.8381 1.7654 1.5357
Clustering Coefficient	0.5375	0.4134	0.57	0.2492 0.2468 0.4629
Degree Distribution	power law (R = 0.1697)	exponential (R = -1.0166)	exponential (R = -1.541)	N/A
Giant Component	0.9545	1.0	0.99	1.0 1.0 1.0
Assortativity	-0.1934	-0.2069	-0.1027231	0.0730 -0.0792 -0.0107

Degree Distribution Graph

Harry Potter Network

Congress Twitter Network

Model

Star Wars Network

- small world
- disassortative
- power law
- giant component > 90% ✓
- but... small sample size

Harry Potter Network

- small world
- disassortative
- exponential
 - small sample size (18)
- giant component > 90 % ✓

Congress Twitter Network

- not small world
- disassortative
- exponential
- giant component > 90 % X

Conclusion

Star Wars and Harry Potter Networks shared properties of fictional networks

Unique properties of the Congress Twitter Network

- Not exactly social
- Not exactly fictional
- Artificial

Su, Sharma & Goel (2016)

 In 2010, Twitter's "Friend of a friend" feature caused popular accounts to get more popular

Areas for more investigation

- investigation into twitter networks v. other social networks
- further analysis of congressional data set (party affiliation, chamber, etc.)

References

- Colin S. Gillespie (2015). Fitting Heavy Tailed Distributions: The poweRlaw Package. Journal of Statistical Software, 64(2), 1-16. URL http://www.jstatsoft.org/v64/i02/.
- D.(2014,November5).Dpmartin42/Networks.From https://github.com/dpmartin42/Networks/tree/master/Harrypotter/data
- Gábor Csárdi, Tamás Nepusz: The igraph software package for complex network research. InterJournal Complex Systems, 1695, 2006.
- P.(2016, January 20). ablobarbera/data-science-workshop. Retrieved from https://github.com/pablobarbera/data science-workshop/blob/master/sna/data
- Padraig Mac Carron and Ralph Kenna, Universal Properties of Mythological Networks, EPL, 99 (2012) 28002, doi: 10.1209/0295-5075/99/28002
- Su, J., Sharma, A., & Goel, S. (2016, April). The effect of recommendations on network structure. In Proceedings of the 25th international conference on World Wide Web (pp. 1157-1167). International World Wide Web Conferences Steering Committee.