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Abstract

The multi-armed bandit problem has recently gained popularity as
a model for studying the tradeoff between exploration and exploitation
in reinforcement learning. While many algorithms are understood well
theoretically, empirical results suggest that relatively naive algorithms
outperform more theoretically sound ones. This paper provides such evi-
dence for a few popular algorithms. The short-term and long-term behav-
iors of several popular Multi-Arm Bandit solutions were also examined.
This examination is motivated by the wide variety of uses for reinforce-
ment learning. Applications sometimes call for an algorithm which learns
quickly, but sacrifices optimal long term performance. Two important
observations can be made from our results. First, our paper reinforces
the results of previous papers which found that the e-greedy and Softmax
algorithms outperform algorithms such as Thompson Sampling [1][2]. Sec-
ondly, the inherent tradeoffs with learning algorithms lead to varying per-
formance in the short term, within 200 iterations and long term, at 1000
iterations. Optimal algorithm choice varies greatly across the parameters
tested. Epsilon-Greedy and Softmax are often the optimal algorithms.



1 Introduction

The multi-armed bandit problem was introduced by Robbins in 1952 [2]
and has gained significant attention in machine learning applications. The
name for the model comes from the one-armed bandit which is a colloquial
name for a slot machine. The problem poses a situation where a gambler
walks into a casino and sits down at a row of slot machines. Each one pro-
duces a random payout according to some distribution which is unknown
to the gambler. Because the distributions are unknown, the gambler must
learn about the distributions by experimenting. As the gambler begins to
pull arms and receive payouts, they face the inherent tradeoff. They must
either try to exploit their existing knowledge and pull arms that have
previously paid out the most to earn more in the short term, or explore
alternative arms in order to learn the true distributions and receive the
highest payout in the long term. They need to develop a sequential strat-
egy to balance exploitation and exploration to maximize their payout. We
can formally describe the multi-armed bandit in this way:

There are K probability distributions < Ds,..., Dg > with corre-
sponding expected values < ji1, ..., urx > and variances < 012, ..., 0x> >.
Each distribution corresponds to a slot machine, and the distributions are
initially unknown to the gambler. At each turnt¢ =1,2,...,7T the gambler
chooses an arm with index j(t) and receives a reward 7(t) ~ Dj) [2].

As a performance metric, we chose to use per-period regret over a
time period t, where regret is simply the normalized difference between
the reward of the optimal action and the cumulative average reward. More
formally, we can define regret R at each period t as

R, = (e :Mt)7
nw

where p* = max;—1,. . x ¢ is the expected reward from the best arm.

The choice of the multi-arm bandit problem is motivated by its appli-
cation to machine learning as a way to effectively measure the performance
of learning algorithms. Due to a wide number of applications, the aim of
this study is to inform the appropriate learning algorithm choice given a
Gaussian or Bernoulli distribution and whether long or short-term per-
formance is desired. We focus on the latter as some specific applications
such as clinical trials have a limited sample size thus have a need for short
term performance.

2 Evaluating Algorithms for Multi-Armed
Bandit

An extensive empirical study on multiple algorithms was done by Vermorel
and Mohri (2005) [1], but has since been followed by a series of new
studies. These studies conclude the initial finding that naive algorithms
such as e-greedy often outperform more theoretically sound ones. A follow



up study done by Kuleshov and Precup (2014) found that variance was a
largely influential factor in determining the success of a learning algorithm
[2]. While many analyses were done on algorithms such as UCBI, recent
attention in literature has shifted to the Thompson Sampling method,
which is described in detail by Russo et.al (2018) [5].

In this study, we include two types of distributions for the slot-machines.
The first type is the Gaussian distribution whose probability density func-
tion is defined as
L elmm?/20?
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The second type is the Bernoulli distribution whose probability mass
function is defined as

P if k=1
k;p) =
f(kip) {l—p if k=0,

where k is an outcome.

We picked these two distributions because they encompass a wide va-
riety of applications such as the ”success/failure” of advertising.

In order to get an accurate result from our experiments, we averaged
over 100 runs. This reduces error from random chance to get an overall
comparison of the algorithms.

2.1 Algorithms

The formal definitions for the algorithms used are well known, with the
exception of the vary-greedy algorithm. The vary-greedy algorithm was
created as an efficient way to improve the epsilon-greedy algorithm. The
formal definitions are detailled below:

2.1.1 e-greedy

The e-greedy algorithm is particularly popular because of its simplicity.
For the same reason, it is often considered to be a naive algorithm. At each
round t = 1,...,T the algorithm selects a random arm with probability
€ and selects the arm with the highest empirical mean with probability
1—e

Given empirical means p1(0), .., un(0),

1—ce¢ if i = argmax;— i(t
pilt+1) = .g j=1,...N K5 (t)

e/(N —1) otherwise.
Two decay rates were chosen for €. The first was exponential decay and
the second logarithmic decay. Each decay mode had a scaling parameter.



2.1.2 Softmax (Boltzmann)

The Softmax algorithm is based on the Boltzmann distribution, where the
probability of arm n being chosen is given by

pietn T

P(n) = — €2
e SN uZern /T

where p is the sample mean.

2.1.3 Thompson Sampling

This method was first proposed in 1933 for clinical trials as a method of
allocating experimental effort, but has since seen a surge of interest as a
bandit solution [5]. We specifically define this algorithm for Bernoulli dis-
tributions as it was not experimentally tested for Gaussian distributions.
This method assumes the distributions of the means to be Beta(a, 3) dis-
tributions with «, 8 = 1 initially. There are N possible actions where each
action n produces an expected reward of 6,, found by taking one sample
from each Beta distribution. At each turn, the algorithm chooses the
arm z(t) with the highest mean 6" = max;=1, 5 6;. It then updates the
distributions according to the rule

(o, Bn) if 7 #n
(an7 /Bn) + (rz(t)7 1- Ta:(t)) if Ty =M,

where 75y € {0,1} is the reward at turn t from machine z(t).

2.1.4 Vary-Greedy

This algorithm is an extension of the e-greedy algorithm, and is our at-
tempt to improve Epsilon-Greedy. The formal definition is identical to
the standard e-greedy with one additional component. The algorithm will
no longer include arms whose rewards are 1 or more standard deviation
less than the mean 0 of the experimental best arm while exploring.

1—¢ if ¢ = argmaxj=1,...n p; ()
pi(t+1) =40 if pi+o0s < p”
e/(N—-1—k) otherwise.

where N is the number of Arms and k is the number of Arms whose
average is 1 standard deviation below the mean of best machine

2.2 Short term vs Long term behavior

We define short term as the first 200 turns and long term as the asymptotic
behavior as t approaches infinity, truncated at ¢ = 1000 due to computa-
tional constraints. From testing, we have seen that an algorithm that is



optimal in the first 200 turns can be outperformed by another algorithm
in the long term. For this reason we chose to look into short term behavior
as some applications have a limited sample size thus restricting their total
number of turns. An example would be clinical trials having a limited
amount of experimental drugs.

An example of the trade-off between short-term and long-term per-
formance can be seen in Figure 2. This is a sample regret plot where
Vary-Greedy has better performance in the short term, but is beaten by
Softmax in the long term.

2.3 Spread-out distributions vs Overlapping dis-
tributions

We define overlapping distributions as a set of distributions where the
differences in the means are less than the standard deviations (i.e. distri-
butions encompasses one another). We define spread-out distributions as
a set of distributions where the differences in means are greater than the
standard deviations (i.e. distributions don’t touch one another).

An example of how the distributions can affect the performance of
the algorithms can be seen below in Figures 1 and 2. In Figure 1, the
algorithms are evaluated using spread-out distributions and Vary-Greedy
is optimal. In Figure 2, the algorithms are evaluated using overlapping
distributions and Softmax is optimal.
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Figure 1: Vary-Greedy performs well in spread-out distributions
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Figure 2: Softmax beats Vary Greedy in overlapping distributions
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Figure 3: Thompson beats simple algorithms in spread-out distributions



3 Results

Optimal Algorithms for Bernoulli Distributions

Bernoulli
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Figure 4: Tree Diagram depicting optimal algorithms based on each parameter
tested for Bernoulli distribution



Optimal Algorithms for Gaussian Distributions
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Figure 5: Tree Diagram depicting optimal algorithms based on each parameter
tested for Gaussian distribution
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Figure 6: Standard deviation of Epsilon-Greedy over 100 runs
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Figure 7: Standard deviation of Epsilon-Greedy over 100 runs (Gaussian)
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Figure 8: Standard deviation of Softmax over 100 runs
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Figure 9: Standard deviation of Softmax over 100 runs (Gaussian)

10



018 Bgrncnlll Ban@lt

‘ 1 TS with Std Dev

0.16 {

Normalized Regret

200 400 600 800 1000

Figure 10: Standard deviation of Thompson Sampling over 100 runs
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4 Conclusion

Softmax and Vary-Greedy generally outperformed more complex algo-
rithms like Thompson Sampling. This reinforces previous findings that
suggest naive approaches are often superior [1][2]. Thus empirical data for
algorithms is needed to inform algorithm choice and theoretically sound
algorithms may still be worst in practice. While an analysis of many
distributions would be needed to draw broader conclusions, the two dis-
tribution types had little impact on performance (figures 4,5). It may
be that Gaussian and Bernoulli distributions give similar results as the
repeated sampling of a Bernoulli distribution is a binomial distribution,
which is essentially a discrete Gaussian. Other distributions such as the
exponential may have different results.

The data from the distributions is different, however, in one key way: the
variance of the convergence. The standard deviation of the averaged runs
was obtained and plotted for each algorithm and distribution in figures
6-11. As can be seen, the standard deviation for the algorithms under
the Gaussian distribution is much larger than that of the Bernoulli. A
likely candidate for this difference is the continuous nature of the Gaus-
sian. This leads to a higher chance that small sample size will result in an
average that is much less then expected. If this happens to the best arm,
it is likely to converge to a different arm in epsilon-greedy, especially if
epsilon is decaying quickly. In Softmax, this will lead to a much smaller
chance that the best arm is chosen, and so many trials might be needed
to correct the initial bias. For epsilon greedy, this can be solved through a
slower decay, at the cost of longer convergence times. In the case of Soft-
max, attempting to reduce this likelihood will cause worse convergence
due to the arms having more equal probabilities. It is also important to
note that the graphs were obtained for overlapping distributions, where
such initial bias is more pronounced.

In addition to the effect on variance of performance, overlapping distribu-
tions also affect algorithm choice. Thompson Sampling and Vary-Greedy
both benefit more from distributions that are spread-out than Epsilon
Greedy and Softmax in the long term. This is due to both algorithms
not testing clearly inferior distributions. In the case of Thompson sam-
pling, after a few turns, it is unlikely that a machine with a low mean
will have a beta distribution sample larger than the best machine. This
removes it from consideration, reducing the number of arms to choose
from. Similarly, Vary-Greedy will drop machines that are far below the
best, which is easier if the distributions are spread-out. If averages are
close, or we are interested in performance in the short term, these ad-
vantages are eliminated. Thus, quickly exploiting what you know is the
better option. This is shown by the better performance of the nave algo-
rithms in the short term, and with overlapping distributions (figures 4,5).
As mentioned above, these algorithms do not always converge to zero,
easily getting caught in local minima. Therefore, if the best long-term
performance is desired, Thompson sampling may be a better pick, even
with overlapping distributions. This is due to it having a strong likelihood
that the regret will converge to zero [5]. Longer runs would be required
to see if Thompson sampling does truly perform better with overlapping

12



distributions in the long-term. For Gaussian, a slower decay rate may be
similarly better. Such additional exploration will slow learning but reduce
the chance of non-optimal convergence.
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