

The Effect of Social Polarization on the Outcome of Information Battles

Kaitong You; Rongrong Cao; Steven Jiang

Introduction

- Propaganda Battle
 - Each member of the society is subject to two competing flows of information
 - These two flows are generated by
 - Two competing parties
 - Each flow consists of propaganda and rumor
 - Way of information displacement
 - Interpersonal communication
 - Media

• Political Polarization

- Due to the development of social media and the Internet in general
- The impact of polarization on political events is widely discussed
- "A Polarized Society"
 - Using a distribution curve with two high horizontal plateaus
 - The distance between the gravity centers of these plateaus is taken as a measure of polarization
 - The process of increasing polarization has the form of a mutual removal of the plateau from each other.

Distribution of Individuals $N(\varphi)$

- d: degree of polarization of society(how groups are distant from each other in attutides)
- $\frac{1}{h}$: measure of consolidation of individuals within each group

Model

- Aim
 - Study how the level of political polarization affects the outcome of the propaganda battle
- Approach
 - Focus on a different aspect of information warfare \rightarrow Choose the **position** of individual
 - Model base: Rashevshy's neurological scheme
- Assumption
 - The society is a struggle between two parties X and Y
 - Each of party has its own media
 - An individual belonging to this society, as each moment of time has a position on the issue in question

Position Factors

- Permanent attitude
 - Individual for each member of the society
 - $\varphi \in (-\infty, \infty)$
 - Fundamental tendency to support one party or another
- Dynamic component
 - The information field of society as a whole
 - $\psi(t) \in (-\infty, \infty)$
 - Social environment of the shift of stimuli towards the support of the party X
 - It is affected by the propaganda of both parties through the media and rumors
- Support X: $\varphi + \psi(t) > 0$
- Support Y: $\varphi + \psi(t) < 0$
- $N(\varphi)$: Function describing the distribution of individual Total number of individuals: $\int_{-\infty}^{\infty} N(\varphi) d\varphi = N_0$

$$X(t) = \int_{-\psi(t)}^{\infty} N(\varphi) d\varphi \qquad Y(t) = \int_{-\infty}^{-\psi(t)} N(\varphi) d\varphi$$

$$\frac{d\psi}{dt} = A\alpha \left[C(2X(t) - N_0) + b_1 - b_2\right] - a\psi$$

Initial condition(initial number of supporters for X party): $X(0) = \int_{-\psi(t)}^{\infty} N(\varphi) d\varphi$

Positive constant

- C: importance of interpersonal communication
- b_1 , b_2 : intensity of the media from each party ($b_1 > b_2$)
- $A\alpha$: susceptibility of individuals to stimuli
- a: decay rate

$$\frac{d\psi}{dt} = A\alpha \left[C \left(2 \int_{-\psi(t)}^{\infty} N(\varphi) d\varphi - N_0 \right) + b_1 - b_2 \right] - a\psi$$

Equilibrium: set
$$\frac{d\psi}{dt} = 0$$

$$A\alpha(b_1-b_2)$$

$$P = \frac{A\alpha(b_1 - b_2)}{a} \qquad Q = \frac{A\alpha C N_0}{a}$$

$$\psi^1 = P + Q > 0$$
, $\psi^2 = \frac{Q(-d-h)+2hP}{2h-Q} > 0$, $\psi^3 = P > 0$, $\psi^4 = \frac{Q(d-h)+2hP}{2h-Q} < 0$, $\psi^5 = -Q + P < 0$

$$\psi^1 = P + Q$$

$$\psi^2 = \frac{Q(-d-h) + 2hP}{2h-Q}$$

$$\psi^3 = P$$

$$\psi^4 = \frac{Q(d-h) + 2hP}{2h - Q}$$

$$\psi^5 = -Q + P$$

A sociological interpretation of the results

From the final result for one thing we will three possible cases

- -X win
- Y win
- Draw

From Statistical point of view

- X have certain percentage of chance to win
- Y have certain percentage of chance to win
- The third case, it will have certain percentage of chance to become a draw.

Assumption: $h < \frac{Q}{2} - P$

- h < d < Q P h: X and Y and the same percentages to win, but it also could be draw.
- . Q P h < d There pare my ore imposition of the Party X,

so the area for the residuishing the stand of the residual bright the stand of the residual bright the stand of the stand

- Q + P h < d: The final result will always be draw.
- d < h: Overlaps

References

- Thanks to our mentor Jonathan. David Taylor
- Mikhailov, A.P. & Petrov, Alexander & Proncheva, Olga. (2017). Modeling the Effect of Political Polarization on the Outcome of Propaganda Battle. COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES. 1. 65-81. 10.23947/2587-8999-2017-1-1-65-81;
- M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili. Theory of Rumor Spreading in Complex Social Networks // Physica A. 2007. 374. pp. 457- 470
- Yanagizawa-Drott D. Propaganda and Conflict: Evidence from the Rwandan Genocide // The Quarterly Journal of Economics.2014 129(4). 1947-1994. Doi: 10.1093/qje/qju020
- Guanghua Chen, Huizhang Shen, Teng Ye, Guangming Chen, and Naphtali Kerr, A Kinetic Model f or the Spread of Rumor in Emergencies, Hindawi Publishing Corporation, Discrete Dynamics in Nature and Society, Volume 2013, Article ID 605854, 8 pages, http://dx.doi.org/10.1155/2013/605854
- Mikhailov A. P., Petrov A. P., Proncheva O. G., Marevtseva N. A., Mathematical Modeling of Information Warfare in a Society, Mediterranean Journal of Social Sciences, MCSER Publishing, Rome-Italy, Vol 6 No 5 S2, September 2015, Doi:10.5901/mjss.2015.v6n5s2p27.

