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1. An Introduction to the System Considered 

 

The system of the elastic pendulum consists of a spring, connected to a pivot, suspending a mass. This 
spring can have many different properties among these are stiffness which can be considered a constant 
in some practical cases, so the spring has a linear reaction force when extended and compressed. Typically 
a spring that one would find in real-life applications is either an extension spring or a compression spring 
(and this will be discussed in greater detail in section 5) however for simplified models and preliminary 
research we find it practical to consider the case where this spring behaves in a Hookian manor in both 
extension and compression. This assumption, however, does beg this question among others: Does the 
spring bend as shown in Figure 1 when compressed ever, and how would this 
effect the behavior of the system? One way to answer this question is to 
acknowledge that assumptions such as the ones that follow need to be made 
to analyze this system, and in any case, behaviors such as these are not easy 
to analyze and would involve making many more assumptions that could be 
equally unsatisfying. We will be considering two regimes of this system in our 
preliminary research with the same assumptions and will pose questions for 
further research with suggestions for different assumptions. The current 
assumptions are: 

1. The spring is massless, cannot bend, and has a reaction force 
when stretched described by Hooke’s law. 

2. The mass is a point mass at the free end of the spring. 
3. There is no friction in the system to be considered. 
4. The spring and the pivot do not prohibit any motion of the mass –that is they essentially do 

not exist other than to exert the spring force on the point mass. 

The system we have described looks like Figure 2 if both the spring and the mass 
can move through surface that the pivot is mounted on. At this point the system is 
starting to look like a spring mass system –and it also looks a lot like a simple 
pendulum. So we will start to derive the equations of motion of each of these 
components and see how far this gets us. 

 

 

2. An Introduction to the Equations of Motion 

 

The problem of the dynamics of the elastic pendulum can be thought of as the combination of two other 

solvable systems: the elastic problem (simple harmonic motion of a spring) and the simple pendulum.  

Take simple harmonic motion of a spring with a constant spring-constant k having an object of mass m 

attached to the end. When the mass is “pulled” on, displacing the spring from its equilibrium position, 

Hooke’s Law comes into play. This causes the spring to exert an elastic force to restore the spring to 

equilibrium.  

To begin solving the system, combine Newton’s second law and Hooke’s law: 

Figure 1 

Figure 2 



𝐹 = 𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 

We find that from here we have a second order differential equation for the spring’s displacement x with 

respect to time. This gives us a solution of a sinusoidal function: 

𝑥(𝑡) = 𝑐1 cos(𝜔𝑡) + 𝑐2 sin(𝜔𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝜑) 

Where 𝜔 = √𝑘/𝑚, 𝐴 = √𝑐1
2 + 𝑐2

2, 𝜑 = tan−1(𝑐2/𝑐1). The velocity and acceleration of the system can 

also be found from here, taking the first and second derivative of the position equation: 

𝑣(𝑡) = −𝐴𝜔 sin(𝜔𝑡 + 𝜑) 

𝑎(𝑡) = −𝐴𝜔2 cos(𝜔𝑡 + 𝜑) 

From here we can find the frequency f from the angular frequency ω with 𝜔 = 2𝜋𝑓and the time period T 

with 

𝑇 =
1

𝑓
= 2𝜋√

𝑚

𝑘
 . 

Now, take the simple pendulum problem. For the purpose of this paper we shall make several simple 

assumptions (an ideal case). This idealized mathematical model assumes that this pendulum has an object 

with mass attached to the end of an inelastic, massless cord. In this system there is no friction in the 

pendulum’s pivot, no air drag, et cetera, causing this ideal pendulum to swing with a constant amplitude 

once given an initial push. We shall also restrict the size of the oscillation by means of the small-angle 

approximation, or assuming that the initial angle is much less than 1 radian, 𝜃 ≪ 1, allowing the usage of 

the approximation sin(𝜃) ≈ 𝜃. 

 The small-angle approximation then yields the harmonic oscillator equation: 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
𝜃 = 0 

Further approximations now must include initial conditions 𝜃(0) = 𝜃0 and 
𝑑𝜃

𝑑𝑡
(0) = 0. The solution can 

be found from here (recalling that 𝜃0 ≪ 1, with θ0 the maximum angle between the pendulum rod and 

the “vertical” or normal): 

𝜃(𝑡) = 𝜃0 cos (√
𝑔

𝑙
𝑡) 

The period of the motion, or the time for one complete oscillation is then 

𝑇 = 2𝜋√
𝑙

𝑔
 

Note that it is only under this special small-angle case that the time period is independent of initial 

amplitude angle. 



While we can solve simple cases of both the elastic problem and the pendulum problem, to assume that 

an elastic pendulum is simply a combination of these two sets of equations is misguided. This more 

complicated system cannot be solved with a second-order differential equation and even forces 

mathematicians looking at the system into chaos theory. 

 

3. Deriving Equations of Motion Using the Lagrangian 

 

We shall use Cartesian coordinates for the derivation of equations of motion even though it may seem 

less intuitive than spherical coordinates, because this will make it easier to express how the equation can 

be modeled in MATLAB. We will consider positive z to be pointing upward, and we will consider the origin 

to be centered at the pivot. This is the general form of the Lagrangian: 

L = T − V 

T is the kinetic energy of the system. The kinetic energy is equal to 
1

2
mv2 where m is the mass, and v is 

the velocity of the mass. There is no surprise yet, and it comes as no surprise either that =

(vx
2 + vy

2 + vz
2)

1

2 . So letting vx = ẋ  and so on, were the dot represents the time derivative we have the 

kinetic energy of the system T =
1

2
m(ẋ2 + ẏ2 + ż2) and we are now half way done. 

The potential energy of the system consists of two parts: The elastic potential energy stored in the 

displacement of the spring from its equilibrium position, and the gravitational potential energy. Since the 

Lagrangian is derived for the express purpose of differentiating it we will not be concerned with the details 

of defining the gravitational potential energy, namely the discrepancies regarding the reference for origin 

and how that effects the values of the potential energy. 

Starting with the elastic potential energy, we have the pleasure of the 

simplicity of Hooke’s Law F = −kx which we can integrate over a 

displacement to get Velastic =
1

2
kx2. To make this apply to our model, all we 

need to do is imply that there is a length that the spring with the mass 

attached to it, will rest at equilibrium stretched under the weight of the 

mass, mg, we will call this length l. Furthermore we will consider a length l0 

that is the natural, unstretched length of the spring with no weight attached. By Hooke’s law the 

relationship between these lengths is k(l − l0) = mg.  Since l0 is a constant characteristic of the system 

considered, we conclude that Velastic = Ve =
1

2
k(r − l0)2 where r = (x2 + y2 + z2)

1

2.  

Lastly, with all of the simplicity expected the gravitational potential energy of the system is Vg = mgz. 

Things brings us to a complete Lagrangian for the system with the assumptions proposed in section 1: 

L =
1

2
m(ẋ2 + y2 + ż̇ 2)

1
2 − [

1

2
k(r − l0)2 + mgz] 

By differentiating with respect to time with the chain rule, and equating functions of each variable to their 

time derivatives we get a system of ordinary differential equations: 



ẍ = −ωz
2

r − l0

r
x 

ÿ = −ωz
2

r − l0

r
y 

z̈ = −ωz
2

r − l0

r
z − g 

Where ωz
2 =

k

m
 is referred to with subscript of z on the character ω to indicate that it does not represent 

a frequency of the system, but only the frequency of the spring-mass system with only vertical oscillations. 

The system derived above has three degrees of freedom in space, but only two constants of motion, the 

total energy, E = T + V, in the system and the angular momentum per unit mass about the vertical 

represented:  h = xẏ − yẋ; this accounts for two invariant forms of the system. Therefore we say that the 

system is not integrable in general, though in some regimes, particularly those of small oscillations, 

“approximate analytical solutions can be found” (Lynch, 2002)1. These have however already been 

investigated and therefore will not be a focus of our project. 

Though the system in general is not integrable, there is a way to analyze the behavior of the system. This 

way is through numerical integration, which can be done so long as chaotic regimes (with extreme initial 

conditions of high amplitude) are avoided. One way of numerically integrating is through the Runge-Kutta 

method, which can be conveniently employed using MATLAB. ODE45 is MATLAB function which uses a 

variation of the fourth-order Runge-Kuttta method to model ordinary differential equations such as this 

one, results of this modeling will be discussed in section 4. 

 

4. Trivial Cases and Validity of Models 

 

Now, we consider trivial cases of the system with certain initial conditions. The behavior of an elastic 

pendulum can be divided into two different kinds of motions driven by two different potentials: One is 

swinging motion caused by gravitational potential and the other is the vertical oscillation lead by elastic 

potential energy. With diverse initial conditions, the system can develop diverse behavior. Our plans to 

investigate some of the behaviors will be outlined in section 5. Before discussing the trivial cases, we will 

point out what parameters and initial conditions are necessary to define in the model: 

 

Parameters 

g → The gravitational constant acting on the mass 

ωz
2 =

k

m
→ 

The stiffness to mass ratio 

l → The equilibrium length of the spring 

l0 → The relaxed length of the spring 

 

 



Initial Conditions 

x0 ẋ0 
y0 ẏ0 
z0 ż0 

 

When referenced, the initial conditions will be addressed in vector notation for convenience as follows: 

𝐱𝟎 = (x0, ẋ0, y0, ẏ0, z0, ż0) 

One obvious trivial case is when the initial conditions are all null with the exception of z0 and ż0; any initial 

conditions of the form (0,0,0,0, z0, ż0) will yield only vertical oscillations limited to the motions of a 

classical spring-mass system. A more specific trivial case has the initial condition: (0,0,0,0, −l, 0). In this 

case there is no motion whatsoever because the mass will stay at the equilibrium for forever. A more 

interesting case is the initial condition where the mass is balanced above the pivot, (0,0,0,0,2l0 − l, 0) 

where l < 2l0, is an equilibrium of the system, though it is unstable (lynch, 2002)1. Intuitively considering 

the dynamics around this equilibrium point in the xz-plane shows that this point is a saddle point with the 

stable manifold extending down to the pivot and upward to the point that the spring breaks. The unstable 

manifold is horizontal axis extending from the point. 

After considering these case it might make sense to consider a trivial case in 

which the system behaves like a pendulum, but not like a spring. To have any 

hope of realizing a system like this, we would obviously have to assume that 

the initial extension of the spring is null, and that the initial velocity in the 

direction normal to the spring is null. This seems promising, however in order 

to achieve the motion of a simple pendulum, there has to be a velocity angular 

velocity 𝜔(θ) which would follow a circular path in the case of a simple 

pendulum due to the tension force in the string. In the case of the elastic 

pendulum, the spring extends and 

does not follow a circular path, 

furthermore the equilibrium length of the spring does not 

exactly exist when in motion, and would otherwise shift in a 

manor dependent on the angle 𝜃 of the spring with the 

𝑧 −axis along which gravity is acting, shown in Figure 3. Thus 

the potential for the system to behave like a classic 

pendulum is destroyed. In fact, realizing any type of periodic 

motion is unlikely this system, the possibility for quasi-

periodic motion is further discussed in section 5. 

Figure 4 shows the pendulum starting with initial condition 

(𝑙0, 0,0,0,0,0) and swinging for 10 seconds where 𝑔 =

10, 𝑤𝑧
2 = 5 and 𝑙0 = 1. The horizontal vector represents the 

initial position of the system and the vertical arrow 

represents the equilibrium length of the spring 𝑙 =
𝑔

𝑤𝑧
2 + 𝑙0. 

Figure 3; a simple pendulum 

Figure 4; path of pendulum starting with spring 
relaxed 



Here is another representation of the same 

model, with an extra arrow representing the 

position of the spring at the time of the end of 

the simulation (10 seconds). In this case, we 

have forced ODE45 to take a specific step size 

of 30 steps per second and we have told the 

model to drop a point at every step. Now we 

can graphically see, with the density of the 

points, the velocity of the spring at that 

position. We can also see, that over the period 

of 10 seconds, forcing ODE45 to take an 

arbitrary step size had very little effect on its 

representation of the motion of the spring. If 

we had done this without choosing the step 

size, the program would have chosen a step 

size that optimized accuracy and computation 

time as it did for the image in Figure 4. 

The feature to either side of the pivot in figures 

4 and 5 shows the spring becoming 

compressed as the mass speeds toward the 

pivot, this is a prime example of why regimes of small amplitudes are considered for analysis of more 

regular motion and periodic behavior. Features like this increase error with the comparison of a 

mathematical model to an experimental test, because this model does not accurately describe what 

would happen in this situation. Since the system started its motion with no velocity in the y-direction, the 

model continues with this behavior, neglecting the possibility that the spring would bend under 

compression and send the mass moving out of the xz-plane. Though we did assume the spring does not 

bend in section 1, our goal is not to test our assumptions, our goal is to study the behavior of a system in 

as accurate of detail as possible. 

 

5. Goal Setting 

 

On the note of studying the behaviors of the system, we 

have plans to create a physical model of the system in such a way that friction is minimal. 

As stated in section 1, there is no spring that will behave the way we have made our 

assumptions, particularly regarding the assumptions that the spring does not bend and behaves ideally 

under compression and extension, so we plan on testing our model with many springs connected in series 

that are quite free to swivel between one another. The springs should be little in mass compared to the 

bob to realize at least a glimpse of the analogy to the assumptions outlined in section 1. Testing the motion 

of this using a high speed camera and possibly also a long-exposure photograph with an LED light attached 

to the bob would be a great way to test the validity of our model. Also, creating a version of the program 

that assumes that the spring only has a force under extension and not compression should be easy. This 

will tell us whether our model is capable of showing the motion of the spring with some accuracy, though 

Figure 5, alternate representation of figure 4, 30 dots per second 

Figure 6 Figure 7 



we should not assume similar errors to accumulate as in the case of the assumptions made in section 1. 

None of the errors discussed involving the bending of the spring and none of the errors involving the 

abnormalities near the pivot would occur. What would happen is shown in Figure 6, the spring will scrunch 

up when it would otherwise be in compression, and given that each spring shown in Figure 6 weighs 

approximately 1.8 grams, this could cause errors. One error is only circumstantial, the possibility that the 

springs become tangled. This is not a sincere concern of ours as this would only be cause to run another 

trial. An unavoidable error would be that the spring passes its equilibrium point with a negative velocity 

along the radial axis, scrunches and pushes some mass out to the 

side doing work on the bob, and even more the force of the bob 

pulling the springs straight again will cause the displacement of 

the mass to do work on bob again. Though this system is not ideal, 

I believe we can find a bob mass and spring system with 

characteristic stiffness, length and mass that will make these 

errors relatively small so that we can test the motion of large 

amplitudes at least for 10 seconds or so and hope for validity. 

Bungee Jumping 

A secondary reason for running tests of this type is to answer a 

question regarding an application of the elastic pendulum. Can 

the safety of extreme bungee jumping be analyzed using this 

model? If we determine that our model represents the motion of 

a small scale model of bungee jumping within reasonable accuracy, we might infer that a larger scale 

model could hold up. This brings to question whether the safety of bungee jumping with more interesting 

initial conditions than the classic initial displacement of only height could be hypothesized about, and then 

put to a customized test with this model alone. 

Quasi-Periods in Large Amplitude 

Another major question we are intent upon answering is where quasi-periods can be found in large 

amplitudes, and how we can influence the shape of the quasi periodic forms of the system. Studying this 

question should prove to be a productive endeavor given the quantitative nature of the research involved. 

Moreover we already have the aid of our 

MATLAB programs that we will continue 

to develop into more powerful tools for 

calculating such behaviors of the system. 

One lead seems promising in the search 

for quasi-periodic behavior of large 

amplitudes as well as a potential thrill for 

bungee jumping. One is shown in Figure 8 

and represents a very rough and 

underdeveloped idea of what quasi-

periodic behavior we are searching for. It 

Figure 8; quasi-periodic behavior of the system, Δ𝑡 = 300𝑠, 𝑔 = 9,      

𝜔𝑧
2 = 3, 𝑙 = 1 with initial conditions (1,0,0,0,1.1,0) 



has an interesting shape, and a few features worth discussing. One is that the figure bows out in some 

regions, and stays tight in others, but the system shows no ambitions towards changing general shape 

even after minutes. The quasi-period of this motion is approximately 16 seconds. This quasi-periodic 

behavior is a great example of the direction we could go in for examining the logistics of testing thrilling 

experiences for bungee jumpers. Since the mass never enters the domain of compression of the spring, 

we can assume that the motion would be similar for a bungee cable. The idea of the mission would be as 

follows: The jumper leaves a platform at the right endpoint 

of the shape in figure 9 attached to a bungee cable with an 

initial extension, then accelerates away following the path 

down, then over a pivot (imagine the pivot as a pole at the 

vertex of the two arrows in the figure extending normal to 

the page) and to the other endpoint, following the same 

path back to the platform where Velcro is used to safely 

stick to a cushion. With analysis of realistic bungee cables 

and how they compare to spring constants of Hooke’s law, 

and with a system in which friction is realized and 

experimentally accounted for, tests could lead to realizing 

a thrill such as this. One danger of the lure of the quasi-

period must be discussed however: small miscalculations 

and incorrect positions could send a thrill-seeker into 

terror! The figure to the right shows the variance after just 

one “period” of the circumstance in which a jumper leaves the 

platform with a velocity of just 0.1𝑚/𝑠 in the y direction. This 

jumper indubitably misses the platform. Similar variances 

from an anticipated path can occur with small 

miscalculations in the mass of a jumper. On another note, 

the figure to the left shows two similar initial conditions 

over the course of 32 seconds. Both have the same 

parameters, the blue has the same initial conditions as 

the previous blue figures, but the cyan has 𝑥0 = 1.1 

instead of 1. This large divergence in path over such a 

short period of time shows that the behavior of the 

system is not very intuitive or predictable. The quasi-

periods that do abound can easily be neighbored by 

chaotic behavior, though we do not intend to discuss the 

potential for chaotic behavior of the system. 

If we find that we have more time for experimentation our goals for experimentation and research may 

expand, however we are foremost eager to see how a physical model stands up to the MATLAB models 

we have been referencing throughout the paper. Here we recapitulate our goals for the project: 

1) DESIGN THE BEST PHYSICAL MODEL THAT WE CAN WITH REASONABLE EXPENDITURE ON RESOURCES. 

2) UNDERSTAND AND IMPROVE OUR MATLAB MODEL BY COMPARING IT TO A PHYSICAL MODEL. 

3) TEST POTENTIAL QUASI-PERIODS AT LARGE AMPLITUDES WITH COMPLEX PATHS. 

Figure 9; Blue is the same as figure 8, red has an initial 
velocity in y-direction of 0.1 

Figure 10, a small difference in initial x displacement 
goes a long way 



4) DISCUSS THE POTENTIAL APPLICATIONS FOR COMPREHENSION OF CERTAIN REGIMES OF THE DYNAMICS OF THE 

ELASTIC PENDULUM, INCLUDING EXTREME BUNGEE JUMPING. 
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