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We develop models to describe small displacement, small relative to the total length of the chain
L, of a hanging chain. We find sinusoidal time-dependent solutions and Bessel function spatial
solutions. We propose to experimentally verify the model using a drill, chain, and high-speed
(1000 fps) camera. The model neglects friction due to the interaction of fluid (air) with the chain,
hence we propose to correct this by introducing friction terms into the model and experimentally
verify damping coefficients. Moreover, we propose to experimentally and numerically consider
the fluid-structure interaction between rotating heavy-chain immersed in more viscous fluid,
water.

1. Background/Introduction

Figure 1: Hanging
Chain (Rozman
2017).

Hanging chain problems continue to attract attention in
physics and mathematics since James Bernoulli first solved
the case of a uniform chain hanging due to gravity [Wilson
(1908)]. The classical solution involves special functions, eigen-
values, and separation of variables; thus, the problem is highly
didactic of the methods involved and is presented in a number
of classical mechanics textbooks [Morin (2003), McKay (2003)].
Furthermore, the hanging chain model, due to its accessibility
and low cost, is easily experimentally verified by students
and researchers alike. Moreover, the case on hanging chains
is not closed and research on hanging chains is on-going
today [Fritzkowski & Kaminski (2013), Verbin (2015), Petit &
Rouchon (2001), Wang & Wang (2010)]. The hanging chain
system presents an opportunity not only to contribute to
novel research; but perhaps equally important, provides an
opportunity contribute to the history of the problem’s use in
mathematical education. In section 2, we present the classical
linearized hanging chain solution and develop motivation to
study the non-linear hanging chain using the n-pendulum model.
Lastly, we lay out our plan to (1) verify the model, (2) introduce
friction, and (3) consider the chain immersed in water.

2. Model

2.1. Classical Derivation

We develop the governing equation with newtonian physics.
Fix the origin of our coordinate system at the un-fixed end of the
chain (Figure 1). We consider displacement of the chain in the x̂
direction to be small relative to the length of the chain, L, and
thus displacement, u, is only considered in the in-plane ŷ direction and parameterized by
vertical position x; and as such, we seek a model to describe u(x,t). Variables are defined
as follows:

• u Transverse displacement [m]
• x Vertical height [m]
• t Time [s]

• ν Linear Density [kgm ]

• g Gravitational Acceleration [ms2 ]
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Figure 2: Hanging Chain.

Consider a small section of the chain of size ∆x (Figure 2). We resolve forces in the ŷ
direction,

∑
F · ŷ = ma · ŷ, and take ∆x→ 0 as follows,

T(x+∆x) · ŷ −T(x) · ŷ = ν∆x
∂2u

∂t2
(2.1)

lim
∆x→0

T(x+∆x) · ŷ −T(x) · ŷ
∆x

= ν
∂2u

∂t2
(2.2)

∂

∂x

{
T(x) · ŷ

}
= ν

∂2u

∂t2
(2.3)

Observe that at an arbitrary point x in the chain, the vertical component of tension,
T(x) · x̂, must support the weight of the chain below it, νgx, thus T(x) · x̂ = νgx. Hence,
we find T(x) · ŷ by defining the angle between T and the x directions as θ. Further more,
note that, since Tension is tangent to the chain, tan(θ) = ∂u

∂x , thus, T(x) · ŷ = νgx∂u∂x .
Hence, returning to equation (2.3), we arrive at the governing equation,

∂

∂x

[
νgx

∂u

∂x

]
= ν

∂2u

∂t2
(2.4)

The chain is assumed to have uniform density and subject to a uniform gravitational
field, thus g and ν are constants.

∂2u

∂t2
= g(

∂u

∂x
+ x

∂2u

∂x2
) (2.5)

Next, we non-dimensionalize our equation. Let X = x
L , U = u

L , and τ = t√
g
L

. Thus,

X ∈ [0, 1], U ∈ [0, 1], and
√

g
L describes a characteristic time of the system, well known

as the period of the simple pendulum. Substituting these variables yields the following
non-dimensionalized governing equation and boundary condition

Uττ = UX +XUXX , U(1, τ) ≡ 0. (2.6)

For convenience, we switch back to conventional notation, with the understanding that we
are working with the non-dimensionalized equation here-on-out unless otherwise stated,
e.g.

utt = ux + xuxx, u(1, t) ≡ 0. (2.7)

We now use the method of separation of variables. We say that the solution U takes the
form u(x, t) = X(x) · T (t). Thus equation 2.7 reduces to the following.

T ′′

T
=
X ′ + x ·X ′′

X
= −λ2, λ ∈ R. (2.8)

In the standard way, the LHS and RHS are parameterized by different variables. The
two are equal for all t and x, thus, both the LHS and RHS must equal some constant.
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Figure 3: J0(x), Y0(x) [Byrne (2007)]

Moreover, with foresight, we recognize that the LHS and RHS must equal some negative
constant to avoid exponential and linearly growing time-dependent solutions. As a result,
we arrive at the decoupled system,

T ′′ + λ2T = 0 (2.9)

xX ′′ +X ′ + x2λ2X = 0 (2.10)

Solutions to the eq (2.9) are well known and describe oscillations of the form sin(|λ|t),
cos(|λ|t). Letting z2 = 4x and using chain rule reduces eq (2.10) to,

z2X ′′ + zX ′ + z2λ2X = 0 (2.11)

Eq (2.11) is well known as a zeroth order Bessel equation with linearly independent
power series solutions J0, Y0 known as the Bessel functions of the first and second kinds
respectively. These solutions can be found with Method of Frobenius [Byrne (2007)].
Hence the spacial profile is given by,

J0(λz) = J0(2λ
√
x) (2.12)

Y0(λz) = Y0(2λ
√
x)). (2.13)

Y0(x) has an asymptote at x = 0 (see figure 3) which corresponds with the end of the
chain and thus is un-physical hence we discard the Y0 solution. By linearity, and the
superposition principle, we arrive at the general solution,

u(x, t) =

∞∑
n=0

{
An sin(λnt) +Bncos(λnt)

}
J0(2λn

√
x). (2.14)

Recalling the boundary condition, u(1, t) = 0, we get

∞∑
n=0

{
An sin(λnt) +Bncos(λnt)

}
J0(2λn) = 0 (2.15)

J0(2λn) = 0 (2.16)

For non-trivial result, An, Bn 6= 0, thus roots of J0 determine natural frequencies λn.
In Figure 4, we present the first three mode shapes corresponding with the first three
zeroes of the Bessel function.
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Figure 4: Vibration Mode Shapes (1-3, left to right) Russell (2011)

2.2. N-Pendulum

Figure 5: N-Pendulum Weibel
& Baillieul (1998).

The above section 2.1 presents the derivation of the
small displacement assumption governing equation of
the chain modeled as a continuum. In order to consider
the dynamics of discrete links in a chain, we consider
the N-Pendulum model (Figure 5). For our purposes,
we consider the length of each pendulum arm li to be
uniform li = L

N where L is the total length of all the
pendulum arms and N is the number of arms. Further,
we consider each mass mi to be uniform mi = M

N where
M is the total mass. Moreover, to gain insight into the
non-linear behavior of the hanging chain problem, we
consider the non-linear n-pendulum system as a bridge
to numerically study the behavior of the hanging chain
without small displacement assumptions [Fritzkowski &
Kaminski (2013), Wang (1994)].

We seek a model of n-coupled differential equations
to describe the in-plane displacement of each mass, mi.
We apply Newtonian mechanics and conclude that the
force on mass mi is due moving pivot about mass mi−1
and the weight of the n− i pendulum masses below.

Fi − Fi−1 = miüi (2.17)

In a similar manner to the analysis in section 2.1,
we observe that the vertical component of tension,
Ti · x̂, must support the weight of the chain below it,∑n
j=i+1mjg, thus

Ti · x̂ =

n∑
j=i+1

mjg (2.18)

Hence, we find T(x) · ŷ with θi as,

Ti · ŷ = tan(θi)

n∑
j=i+1

mjg (2.19)

Hence, returning to equation (2.17), we arrive at the governing equation,

n∑
j=i+1

mjg tan(θi)−
n∑
j=i

mjg tan(θi−1) = miüi (2.20)
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Note that each mass mi is connected by fixed length pendulum arms. Thus, the above
equation (2.20) determines the displacement in the x̂ and simultaneously determines
displacement in the ŷ direction. We plan to use equation (2.20) to model the non-
linear hanging chain system Wang (1994). We can further linearize equation (2.20) using
small oscillations and displacement assumptions, θi << 1 and ui

L << 1 respectively. We
linearize the N-Pendulum system as follows. First, variables are defined as follows:
• ui i-th Transverse Displacement in ŷ direction [m]
• t Time [s]
• g Gravitational Acceleration [ms2 ]

Assumptions
• Small Oscillations (θi<<1) & Small Displacement (ui

L <<1)
• Equal Length and Mass, e.g. mi = mj lq = lp ∀i, j, p, q ∈ [1, N ]

Using the small angle approximation, tan(θi) ≈ sin(θi) = ui+1−ui

li+1
, we find (2.20) becomes

n∑
j=i+1

mjg
ui+1 − ui
li+1

−
n∑
j=i

mjg
ui − ui−1

li
= miüi (2.21)

Assuming equal, uniform mass and length, where mi = M
N , li = L

N

üi =
g

L/N
[(N − i)(ui+1 − 2ui + ui−1)− ui + ui−1]

Let U = u
L/N , τ = t√

g
L/N

. Thus U ∈ [0, 1] and
√

g
L/N describes the characteristic time of

the system, the same as we found in section (2.1). The non-dimension equation becomes,

Uττ = (n− i)(Ui+1 − 2Ui + Ui−1)− Ui + Ui−1

In matrix form,

d2

dτ2
U = AU (2.22)

where, A is given as,

A =



1− 2n n− 1 . . . 0
n− 1 3− 2n n− 2 . . .

n− 2 5− 2n n− 3 . . .
...

...
...

. . .
...

2 −3 1
0 1 −1


(2.23)

The n-pendulum has been studied for unstable Inverted equilibria standing on its
end and it has been found that the unstable equilbiria vanishes as n → ∞ [Weibel
& Baillieul (1998)]. Moreover, the natural frequencies approach zeroes of the Bessel
function of the first kind. Hence, it appears the the N-Pendulum system does in-deed
share characteristics with the hanging chain problem. We plan to numerically model
both the linearized and nonlinearized N-Pendulum systems described by equations
(2.22-23, 2.20 respectively). We have made some progress already on this leveraging an
open source GitHub physics code repository [Li (2015)]. The code is not written very
well (hard coded values, not modular, poor style, etc.) and will be written from scratch
but provides us with a quick method to run simulations. Figure 6 presents results of an
N = 20-Pendulum.
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Figure 6: N=20 Pendulum Simulation [Source Code via Li (2015)]

3. Future Plan

Our plan for future work is three pronged,
(i) Verification
• Compare experimental vs. numerical vs. analytical results

(ii) Extension (Air Friction)
• Introduce air-friction drag term −kut for some friction coefficient k > 0 ∈ R.
• Verify the new model compare experimental vs. numerical vs. analytical results

(iii) Exploration (Water Friction)
• Introduce strong fluid-chain interaction by considering the rotating chain im-
mersed in fluid (water).
• Perform experiment, and, as time permits, construct numerical model based on
the Immersed Boundary Method

3.1. Verification

To verify our models experimentally, we plan to record in-plane hanging chain vibration
modes with a high speed (1000 fps) with the Casio EX-FH25 High Speed Digital Camera.
We plan to use both a chain, but we also plan to consider Mardi-Gras beads as a good
approximation for an N − Pendulum System.

We plan to verify the small displacement hanging chain model (Section 2.2) comparing
numerical, analytical, and experimental results for the following cases,

(i) In-Plane Oscillations
(ii) Chain supporting a concentrated mass, M [Verbin (2015)]
(iii) Rotating Chain [Yong (2006)]

Items (ii) and (iii) in the above list are not explicitly mentioned in Section 2, but are
known to have linearized analytic solutions of extremely similar forms to item (i). The
concentrated mass introduces an extra constant term in the expression for tension in the
chain [Verbin (2015)], resulting in the following equation,

∂2u

∂t2
= g(

∂u

∂x
+ (x+M)

∂2u

∂x2
) (3.1)

The rotating chain governing equation is identical to eq (2.7), except parameterized by
displacement from the vertical axis x̂, x, and arc-length, s [Yong (2006)], as follows

xtt = us + suss, u(L, t) ≡ 0. (3.2)
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with solution,

x(s, t) =

∞∑
n=0

{
An sin(λnt

√
g

L
) +Bncos(λnt

√
g

L
)

}
J0(2λn

√
s

L
). (3.3)

Numerical simulations will use the n-pendulum as an approximate model, and Analyt-
ical verification will take the form of calculating the analytic general solutions (Section
2.1). We plan to combine these results to highlight how our theoretical models compare
to experimental slow-motion footage.

3.2. Extension

We will first extend our model by considering the effect of friction and altering
our original model to account for this force. Essentially we will be trying to find the
coefficients of drag. We suspect that that these coefficients will grow with increasing size
and speed of oscillations of the chain or beads. We will use our experimental verification
results to aid in this process.

Additionally, we will repeat the experimental steps outlined above with the chain
and beads submerged in water. We are interested in comparing the behavior of these
materials under water with our model. We suspect that results may be similar to that of
the behavior described when air friction is considered.

3.3. Exploration

If time permits, we will also consider our the shape of the rotating chain immersed
in water. We are motivated by our extension (Section 3.2), realizing that the chain is
inevitably immersed in a fluid (air), but consider exploring if dynamics of the rotating
chain in a more viscous fluid (water). We are further motivated by the design of vertical
axial wind turbines (VAWTS). One of the most famous VAWT is the Darrieus turbine
(Figure 7), which uses airfoils to create lift that maintains rotation. The Darrieus turbine
has the shape of a troposkein which is the curve an idealized rope (in the absense
of gravity) assumes when anchored at its ends and spun around its long axis at a
constant angular velocity. The troposkien shape reduces the flatwise bending stresses
due to centrifugal and gravitational forces as the blade tends to displace less from its
original shape. A 1986 Sandia report discusses an improved model of the Darrieus turbine
considering the shape a rope assumes under both rotation and the effects of gravity
[Ashwill (1986)]. Darrieus turbine has also been studied extensively using CFD and
experimental methods to optimize the performance [Wenlong et al. (2013)]. There has
also been research interest considering catenaries in viscous fluid, [Chakrabarti & Hanna
(2016)]. Therefore, we are motivated both by our extension section (3.2) and research
interest on the shape of chains and ropes immersed in viscous fluid for both intrinsic
value and possible engineering application.
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Figure 7: Sandia Report Improved Turbine Left, Darrieus Turbine Right
[Ashwill (1986)][Wacker (2005)]

4. Other Applications

There are an immense number of applications and extensions to apply to our basic
model, and we list some here to perhaps motivate future projects. One of these is the
analysis of more dramatic oscillations than our model permitted. Some researchers have
come across the self-knot phenomena. In the presence of large enough oscillations, the
chain will overlap itself and essentially form a knot with itself [Belmonte (2001)].

Another interesting case to consider is that of a magnetic chain. Similar to our inverted,
buoyant material floating chain, the magnetic chain has links which attraction to each
other hold the chain upright when fixed at its lowest point [Schönke & Fried (2017)]. Other
interesting applications Petit & Rouchon (2001)Wang & Wang (2010). These include
using a non-uniform density chain or material, using a driven system (eg. water hose),
sliding the chain in addition to rotating it, and applying control theory stabilization
methods.

Using a buoyant material and attaching it at the bottom of our water-filled tank is also
a variation of our original build that could provide some interesting results. However, it
will be a challenge rigging a system in which we can use a drill to rotate the material in
the tank from below.
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