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Project Description 
 

• Artificial Neural Networks have found a wide range of uses, and their 
learning algorithms determine their usefulness.   

• Much is known about the theoretical performance of learning algorithms 
[1][4]. Empirical evidence suggests, however, that naïve approaches 
often outperform more theoretically sound ones [2][3].  

• Robbins multi-arm bandit problem offers a useful framework for 
evaluating desirable performance characteristics of learning algorithms.   

• The goal of this project is to inform algorithm choice based on empirical 
evaluations of short-term vs. long-term performance characteristics.   

Scientific Challenges 

• Industry and Academia are seeking strategies to optimize Neural Network 
performance 

• With widely varying application, the appropriate choice of algorithm is 
dependent on the algorithms tradeoff between fast-learning and optimal 
choice convergence.  

 
Potential Applications 

• This work has a large span of applications in ad-targeting, stock market 
prediction, recommendation algorithms, data acquisition, and data 
processing.  

 
The Multi-Arm Bandit 

 
• Each slot machine 𝑖𝑖 has a different unknown distribution with an 

unknown expectation 𝜇𝜇𝑖𝑖 
• Each turn, the algorithm selects an arm 
• The normalized regret each round is the difference between the mean 

reward of the optimal arm, and the reward of the arm chosen [1] divided 
by the mean reward of the optimal arm.  

𝑅𝑅 =  
𝜇𝜇∗ − 𝜇𝜇𝑗𝑗(𝑡𝑡)

𝜇𝜇∗
 

Where R is the regret, 𝜇𝜇∗ is the expected reward from the best arm, 
 𝜇𝜇𝑗𝑗(𝑡𝑡)is the reward from the arm j chosen at round t 

 

Figure 1. Diagram of slot machines colloquially known as “single-arm bandits” 
 

Methodology 
 
1. We coded the Multi-arm bandit problem to accommodate: 

• Bernoulli or Gaussian Distributions 
• Different numbers of arms 
• Different means and variances 

 Coded common learning algorithms: 
• Thompson Sampling 
• Softmax (Boltzmann) 
• Epsilon-Greedy 

 Coded a custom algorithm: 
• Vary-Greedy 

2. At every turn, when the algorithm chose an arm to play, the regret was 
measured. 

3. Parameters for the Multi-Arm Bandit were varied and each algorithm was 
tested 

4. The average was taken over 100 runs 
 
Results 
 
1. We observe that EG (w/ exp. Decay) and Softmax generally outperform 

the more complex algorithms such as VG and TS 
 
2. Optimal Algorithm choice is dependent on the type of distribution and 

need for short-term vs long-term performance.  

 
Figure 2. Tree diagram of optimal algorithms for Bernoulli Distributions 

 
Figure 3. Sample results plot comparing three algorithms against a Gaussian Distribution 

Glossary of Technical Terms 
 
Artificial Neural Network: A computing system 
loosely based on biological neural networks, 
through the use of nodes and weighted 
connections.   
Optimal Choice Convergence: An algorithm’s ability 
to converge to zero regret per iteration.   
Spread-out Distributions: Distributions with large 
differences in means compared to Standard 
Deviation. 
Over-lapping Distributions: Distributions with small 
differences in means compared to Standard 
Deviation.  

 

 Figure 4. Tree diagram of optimal algorithms for Gaussian Distributions 
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