2.5: Logarithmic Functions

Logarithm:
For $a > 0$ and $a \neq 1$, and $x > 0$

\[y = \log_a(x) \text{ means } a^y = x. \]

$\log_{10} 100 = 2$ means $10^2 = 100$.
$\log_2 8 = 3$ means $2^3 = 8$.
$\log_3 1 = 0$ means $3^0 = 1$

Example. Evaluate:

1. $\log_2 16$

2. $\log_3 \frac{1}{81}$

Definition. For $a > 0$ and $a \neq 1$, the logarithmic function of base a is defined as

\[f(x) = \log_a(x) \]

for $x > 0$.

Example. Graph $f(x) = \log_3(x)$ and $g(x) = 3^x$. Find the domain and range of both functions.
The domain of \(f(x) = \log_a(x) \) is \(D = (0, \infty) \) and the range is \(R = (-\infty, \infty) \).

For any number \(x \), if \(f(x) = y \), then \(g(y) = x \), we say that \(f \) and \(g \) are inverse functions of each other.

\(f(x) = \log_2(x) \) and \(g(x) = 2^x \) are inverse functions.

For \(a > 0 \) and \(a \neq 1 \), \(f(x) = \log_a(x) \) and \(g(x) = a^x \) are inverse functions.

We can graph the inverse of \(f \) by reflecting the graph of \(f \) about the line \(y = x \).

Example. Find the domain of \(f(x) = \log_{10}(x + 3) \).
Properties of Logarithms: Let x, y be an positive real numbers and let r be any real number. Let a be a positive real number, $a \neq 1$. Then

- 1. $\log_a xy = \log_a x + \log_a y$
- 2. $\log_a \frac{x}{y} = \log_a x - \log_a y$
- 3. $\log_a x^r = r \log_a x$
- 4. $\log_a a = 1$
- 5. $\log_a 1 = 0$
- 6. $\log_a a^r = r$
- 7. $a^{\log_a x} = x$.

Example. Write as a common logarithm:

1. $\log_2(x + 1) + \log_2(x - 1)$

2. $2 \log_3(z + 2) - \log_3(z + 3)$

Example. Expand the logarithm

$$\log_3 \left(\frac{x^2 - 4}{xy} \right)^2$$
In order to graph a logarithmic function on your calculator for a base other than e or 10, the following theorem is useful:

The change-of-base Theorem for logarithms:

Let x be any positive real number and let a and b positive real numbers, $a \neq 1$, $b \neq 1$, then

$$\log_a x = \frac{\log_b x}{\log_b a}.$$

Using $\ln x$ for $\log_e x$ gives the special case:

$$\log_a x = \frac{\ln x}{\ln a}.$$

Example. Evaluate: $\log_7 90$

Solving Logarithmic Equations:

Example. Solve the following Logarithmic Equations:

1. $\log_2 x = 3$
2. $\log_3(4x - 1) = 2$

3. $\log(x - 1) - \log(x + 2) = 1$

4. $\ln(x - 3) + \ln(x + 3) = \ln(x)$
Solving Exponential Equations:

Example. Solve the following Exponential Equations:

1. \(2^x = 3\)

2. \(e^{3x} = 2\)

3. \(3^{x+2} = 5^{2x}\)
Example. With an inflation rate of 3% per year, how long will it take for prices to double: