Global Differential Geometry HW 4

David Glickenstein

October 11, 2007

1) Show that any two-dimensional manifold only has one sectional curvature, say K. Show that the Ricci and scalar curvatures are

$$
\begin{aligned}
\operatorname{Rc}(X, Y) & =K g(X, Y) \\
R & =2 K
\end{aligned}
$$

2) Consider a surface of revolution defined as follows. Let $(f(s), 0, g(s))$ be a curve in \mathbb{R}^{3} parametrized by arclength (so $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=1$). Let Σ be the surface parametrized by (s, θ) gotten by rotating the curve around the z-axis, giving the parametric surface $(f(s) \cos \theta, f(s) \sin \theta, g(s))$. It is easy to see that the induced Riemannian metric on this submanifold is $d s^{2}+f^{2} d \theta^{2}$ (check it for yourself). Show that the sectional curvature is

$$
K(s, \theta)=-\frac{f^{\prime \prime}(s)}{f(s)}
$$

It is not hard to show that the metric on the sphere is

$$
d s^{2}+\sin ^{2} s d \theta^{2}
$$

Thus the sectional curvature is +1 at any point.
3) 7.2
4) In this problem, we give a new geometric interpretations of the Ricci and scalar curvatures
a) Let B be a symmetric bilinear form on an inner product space (V, g), i.e.

$$
B(x, y)=B(y, x)
$$

Consider an orthonormal basis e_{1}, \ldots, e_{n} of V so that if $x=x^{i} e_{i}$ then

$$
B(x, x)=\sum_{i=1}^{n} \lambda_{i}\left(x^{i}\right)^{2}
$$

for some real λ_{i}. Show that

$$
\frac{1}{\omega_{n-1}} \int_{S^{n-1}} B(x, x) d S^{n-1}=\frac{1}{n} \sum \lambda_{i}
$$

where $S^{n-1}=\partial B^{n}$ is the unit sphere, $d S^{n-1}$ is the standard measure on the unit sphere, and ω_{n-1} is the $(n-1)$-dimensional volume of S^{n-1}.
b) Show that the scalar curvature R satisfies

$$
\frac{1}{n} R(p)=\frac{1}{\omega_{n-1}} \int_{S^{n-1}} \operatorname{Rc}(X, X) d S^{n-1}(X)
$$

where $S^{n-1} \subset T_{p} M$ is the unit sphere in $T_{p} M$.
c) Show that the Ricci curvature

$$
\frac{1}{n-1} \operatorname{Rc}(X, X)=\frac{1}{\omega_{n-2}} \int_{S^{n-2}} K(X, Y) d S^{n-2}(Y)
$$

where S^{n-2} is the unit sphere in $T_{p} M$ orthogonal to X and K is the sectional curvature.

