Math 129-8H Written Homework #2

Due September 10, in class.

1. Compute the following integrals:
 (a) \(\int x^2 e^{x^3} \, dx \)
 (b) \(\int_0^\pi e^x \sin e^x \, dx \)

2. Compute the following integrals:
 (a) \(\int x^2 \cos 3x \, dx \)
 (b) \(\int_0^e x^2 \ln (3x) \, dx \)

3. Some functions are defined as integrals. Consider the functions \(F_k \) defined by
 \[
 F_k(x) = \int_0^x \sqrt{1 - k^2 \sin^2 t} \, dt.
 \]
 These functions are called elliptic functions of the second kind and can be thought of as just some other set of functions like \(e^x, \sin x, \) etc. In fact, you can find tables of values for these functions in standard mathematical reference books. Notice that \(F_k(0) = 0 \). Find the following integrals in terms of the functions \(F_k \) by using integration by parts or substitution. Answers should be a number like \(3e^2 + F_1(2) - \frac{1}{2} F_1(\pi) \) or something like that.
 (a) \(\int_0^1 \sqrt{1 - \sin^2 t} \, dt \)
 (b) \(\int_0^1 t \sqrt{1 - \sin^2 (t^2)} \, dt \)
 (c) \(\int_0^1 \frac{t \sin t \cos t}{\sqrt{1 - \sin^2 t}} \, dt \) (Hint: consider the derivative of \(\sqrt{1 - \sin^2 t} \) and then do integration by parts).