
CHAPTER 7: TECHNIQUES OF INTEGRATION

DAVID GLICKENSTEIN

1. Introduction

This semester we will be looking deep into the recesses of calculus. Some of the
main topics will be:

� Integration: we will learn how to integrate functions explicitly, numerically,
and with tables. You are expected already to have a concept of what an
integral is (area under a function, sum of really small things, antiderivative).
This includes both proper and improper integrals!

� Applications of integration: This topic so big and so fundamental, that
we will barely scratch the surface. Only a small selection of topics will be
covered:
�Areas and volumes from slicing
�Volumes of revolution
� Length of curves
�Density
�Work and energy: consider the problem of the harmonic oscillator
(spring)

m
d2x

dt2
= �kx:

What is the motion as a function of time t? of distance from equilib-
rium x?

� Sequences and series: How to you sum an in�nite collection of numbers?
It�s not easy. How do you even know they have a sum? Can you use this to
write down functions? Is this related to weird functions we already know
(like sin, cos, log)?

� Complex numbers: You need to know the basics: addition, multiplication,
division, polar form, roots

� Basic di¤erential equations: This is a topic for another course or four, but
we will learn the basics of what a di¤erential equation is (hint: you already
know this, but maybe haven�t thought about it this way), the structure
of solutions (how much information do you need to solve one?), how to
solve the very easiest ones, a naive way to �nd numerical solutions, some
super-duper basic applications like population growth.

This is the second course in calculus given here at UA. Some things to keep in
mind:

� This course moves superfast. If you previously took calculus in high school
or took Math 124 here, you will �nd that this class moves at least twice as
fast. DO NOT BE LEFT BEHIND!
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� I will not be assigning enough homework for most of you to learn the
material. Generally, all the homework in the assigned sections is relevant,
so try to look at it all and see if you can do it. Learning mathematics is
like riding a bike: you need to keep working at it until you �get it.�Some
people might just get right on the bike and start riding, others will fall a
few times �rst. But you know when you�ve got it (or, at least, someone
else does, and can tell you, �No, you are not riding that bike! You are just
walking along the side and holding it up!�) Maybe you need to get on from
a di¤erent place or look at it a di¤erent way. Keep trying until you more
or less get it. Sure, maybe you won�t be ready to ride without your hands
for a few more classes, but at least you can ride around the block to your
friend�s house and calculate some integrals.

� Did I mention this course moves superfast?
� Ask questions if you can (if you can�t, it is likely you do not understand).
Ask me in class. Ask me in o¢ ce hours. Ask your friends. Ask tutors. What
should you ask about? Ask �why.� Ask about the meanings of symbols
(they are strange that way for a reason, usually). Rephrase something in
your own words and ask if that is the right idea.

2. Integration by substitution

We consider the problem of paramtrization. Compute an approximation of the
integral Z 4

0

p
2x+ 1dx

by doing left and right sums with two subintervals:

LHS = (2) (1) + (2)
p
5 = 2 + 2

p
5

RHS = 2
p
5 + 2 (3) = 6 + 2

p
5:

What if we change the variable to y = 2x + 1. Then the limits should go from
y (0) = 1 to y (4) = 9 and the integrand is

p
y: Again, we compute the left and

right sums with two subintervals:

LHS = (4) (1) + (4)
p
5 = 4 + 4

p
5

RHS = 4
p
5 + 4 (3) = 12 + 4

p
5:

What do you notice? The problem is that we did not change dx to dy appropriately,
and the change of interval is too large. We need to divide by two in order to do
this appropriately. In integrals, this isZ 4

0

p
2x+ 1dx =

1

2

Z 9

1

p
ydy:

The 1
2 follows from the fact that we multiplied x by 2 to get y; so our intervals are

twice as large and so we need to divide by two. Another way to think of this is

dy = 2dx =
dy

dx
dx:
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The di¤erence is whether we want to parametrize the integral by x or by y: It
doesn�t really matter in the end, since the de�nite integral is a number, not a
function of x or of y:
This idea is very useful for calculating antiderivatives, as we will see soon. Here

is another example of change of variables.
Consider a spring. Newton�s law is that mass times acceleration equals force.

Hooke�s law is that force on a spring is proportional to displacement from equilib-
rium. If x denotes the displacement from equilibrium, we get the following equation
governing the spring:

m
d2x

dt2
= �kx

where k is a positive constant. Now, suppose we wanted to solve this equation.
Normally, we would integrate the equation with respect to t; but the force on the
right is an explicit function of x, not t: Here is a very powerful idea:Z b

a

m
d2x

dt2
dx = �

Z b

a

kxdx:

The integral on the right is easy:

�
Z b

a

kxdx =
k

2

�
a2 � b2

�
:

The integral on the left is harder, since it is written as a derivative of t; not x:
However, by reparametrizing, we can write it as an integral over t:Z b

a

m
d2x

dt2
dx =

Z x=b

x=a

m
d2x

dt2
dx

dt
dt

=

Z x=b

x=a

m
dv

dt
vdt

=

Z x=b

x=a

1

2
m

�
d

dt
v2
�
dt

=
1

2
m
�
v2
��
x=b

� v2
��
x=a

�
:

Now suppose we start at a = L where velocity is zero (so we just release it). Then
one way to denote the motion is by

1

2
mv2 =

k

2

�
L2 � x2

�
:

Where is the velocity zero? at x = L or x = �L: Where is the velocity maximal?
at x = 0:

Here is some easier stu¤. You should have seen this last semester, so we will just
be whizzing through this. Ask questions if you need to, though, since substitution
is VERY, VERY, VERY important.

Example 1. Calculate the antiderivative:Z
2xex

2

dx
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Solution 1. Wait, don�t look at this as a function of x; maybe use w = x2 (the
variable w is made up, and can be called whatever you like since it does not really
exist until you make it up). Our goal is to replace all x�s by w�s. Be sure to change
the dx to a dw!

w = x2 dw = 2xdx

Note: I like the di¤erential notation, where dw = dw
dx dx; but the book does not (look

it up!) Either is �ne, as long as you use it properly. Okay, continuing...Z
2xex

2

dx =

Z
ewdw

= ew + C:

But WAIT!!!!! The variable w did not exist before, so if we tell other people this is
the answer, they won�t know what it means! (It�s like telling the police o¢ cer that
your speed is really only 4 megabobs/hr. She�ll write you a ticket before you can say
�Buenos tardes�) So we need to go back to x; and giveZ

2xex
2

dx = ex
2

+ C:

Done and done.

Solution 2. Wait! Is this right? Let�s check:
d

dx

�
ex

2

+ C
�
= 2xex

2

:

Bingo.

Solution 3. Maybe you were clever, and could see right away that the antiderivative
should be ex

2

+ C: That�s �ne, just check your guess ala the last solution. By the
end of the week, you should be able to do that with an integral this easy, or you
probably don�t get it yet! In the end, you should be able to do this both ways!

Example 2. Find the antiderivative:
R
3t99

p
t100 + 9dt:

Solution 4. Why do we use substitution? To get rid of stu¤ inside other stu¤,
usually. What�s inside? It�s that t100 + 9; that we don�t know what to do with
(remember,

p
t100 + 9 6= t50+3: That�s just unbelievably wrong (do you really think

that
p
10 = 4? Seriously?) So

w = t100 + 9 dw = 100t99dt:

Uh, oh. No 100t99dt in there. But there is 3t99dt; so we adjust:Z
3t99

p
t100 + 9dt =

Z p
t100 + 93t99dt

=

Z
3

100

p
t100 + 9100t99dt

=
3

100

Z p
wdw

=
1

50
w3=2 + C

=
1

50

�
t100 + 9

�3=2
+ C

Go ahead and check it. It�s right.
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Example 3. Compute:
R �
0
sin � sin (cos �) d�

Solution 5. Note that this is a de�nite integral! Okay, still, we have an inside
function, and so

w = cos � dw = � sin �d�
and so Z �

0

sin � sin (cos �) d� = �
Z �

0

sin (w) dw:

WAIT!!!!! Those bounds are not for w (my made up, imaginary variable friend),
they are for �! So, really we should have writtenZ �

0

sin � sin (cos �) d� = �
Z �=�

0=�

sin (w) dw:

This time, our answer should be a number, so it is perfectly okay to say, well, if
� = �; then w = cos� = �1; and if � = 0; then w = cos 0 = 1; and soZ �

0

sin � sin (cos �) d� = �
Z �=�

0=�

sin (w) dw

= �
Z �1

1

sin (w) dw

= cos (�1)� cos (1)
( = 0 since cos (�1) = cos (1))

This answer does not have this mysterious w (since really � was a dummy variable,
too, since the integral gives a number, not a function), so it is perfectly kosher. OR,
we could stick with �; and doZ �

0

sin � sin (cos �) d� = �
Z �=�

0=�

sin (w) dw

= �
Z �=�

0=�

sin (w) dw

= coswj�=�0��

= cos (cos �)j�=�0��

= cos (�1)� cos (1)
( = 0 since cos (�1) = cos (1))

Example 4.
R

1
4+y2 dy

Example 5. Find the antiderivative:
R
tan �d�

Example 6. Compute:
R 1
0

dx
2�x

Example 7. Find the antiderivative:
R p

1�
p
xdx

Things to keep in mind:
� If you can�t get rid of the dx or dt or d� in the original problem, then you
CANNOT use substitution!!!!!!!! VERY IMPORTANT. Very often it fails
to work. For instance, Z

x2ex
2

dx
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cannot be solved using substitution! You must turn everything into w; dw
before you integrate. NEVER try to integrate something like

R
f (w) dx:

Ever.
� Get good at this. It should be one of the �rst tools you turn to. Plus, it�s
fun!

� Think about why some integrals can be done with substitution and some
cannot. Sometimes you might be surprised.

� Be keenly aware of whether your answer should be a function of a particular
variable (an antiderivative, a de�nite integral with a variable in the limits)
or a number (a de�nite integral with numbers in the limits), etc.

� Think about all possible substitutions. For a given integral, there are only
a few. Which ones work, which ones do not? Why?

� Remember, integration by substitution is all about replacing some piece
of your integral with a new variable �blah�and rewriting your integral as
integral of a function of �blah�d�blah�. Don�t forget the d�blah�!

� Substitution is the inverse of the chain rule. So when you check your answer,
you�d better be using the chain rule!

3. Integration by parts

Integration by parts is a technique to use this really cool observation: By the
product rule, we have

d

dx
(uv) =

du

dx
v + u

dv

dx
and so integrating with respect to x; we getZ

d

dx
(uv) dx =

Z
du

dx
vdx+

Z
u
dv

dx
dx:

So, for de�nite integrals, we have

uvjba =
Z b

a

du

dx
vdx+

Z b

a

u
dv

dx
dx

or, more compactly

uvjb=xa=x =

Z b=x

a=x

vdu+

Z b=x

a=x

udv

You can use this to turn one of the integrals on the right into another. Check it
out:

d

dx
(x sinx) = sinx+ x cosx

and so

x sinx =

Z
sinxdx+

Z
x cosxdx;

so if I want to calculate Z
x cosxdx = x sinx�

Z
sinxdx

= x sinx+ cosx+ C:

Double check it!
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In general, if we want to convert one integral to another using integration by
parts, we need to do this: Z

udv = uv �
Z
vdu

and so you need to take your integral
R
f (x) dx and break it up into two pieces: u

and dv; then use that to �nd du and v (so you di¤erentiate u and integrate v). It
only works if you can do that.

Example 8. Find the antiderivative:
R
t ln t dt

Example 9. Find the antiderivative:
R
y2eydy

Example 10. Compute:
R x
0
cos2 t dt

Solution 6. We do the following integration by parts:

du = cos t dt v = cos t

u = sin t dv = � sin t dt

to get Z x

0

cos2 t dt = sin t cos tjx0 +
Z x

0

sin2 t dt

= sin t cos tjx0 +
Z x

0

�
1� cos2 t

�
dt

and so

2

Z x

0

cos2 t dt = sin t cos tjx0 +
Z x

0

dt

= sinx cosx+ x

and so Z x

0

cos2 t dt =
1

2
sinx cosx+

1

2
x:

Note: this is a de�nite integral, so there is no �+C.�

Example 11. Find the antiderivative:
R
ex sin 3x dx

Example 12. Find the antiderivative:
R
arcsinx dx

The basic idea: be sure to choose u so that it gets better when you di¤erentiate
it (natural log, polynomial, inverse trig) and v so that it doesn�t get too worse when
you integrate (exponential, sine, cosine)

4. Integration of rational functions

Rational functions have the form P (x)
Q(x) where P and Q are polynomials. There

are several techniques that we can use. First, let�s look at when P (x) is linear and
Q (x) is quadratic.
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4.1. Factoring and completing the square. You will notice that sometimes the
quadratic in the denominator looks like

� � ��
(x� a) (x� b)

(where a 6= b) or
� � ��
x2 + a2

(where a 6= 0) and that is it (actually, there are the additional cases of the top case
where a = b and the bottom where a = 0; but these can be done directly with a
substitution). In fact, the factoring (for quadratics) can be done using completing
the square as well.
Completing the square is done as follows:

Example 13. Complete the square to rewrite x2 + 4x+ 8:

Solution 7. We need to form a square, which gives
�
x2 + 4x+ 4

�
+ 8 � 4 =

(x+ 2)
2
+ 4: Note that this is y2 + 22; where y = x+ 2:

Example 14. Complete the square to rewrite x2 + 4x+ 3:

Solution 8. To form a square, we write
�
x2 + 4x+ 4

�
+ 3 � 4 = (x+ 2)2 � 12 =

(x+ 2 + 1) (x+ 2� 1) = (x+ 3) (x+ 1) :

In general, one can complete the square for any quadratic polynomial x2+bx+c
by

x2 + bx+ c = x2 + bx+

�
b

2

�2
+ c�

�
b

2

�2
=

�
x+

b

2

�2
+

 
c�

�
b

2

�2!
:

If
�
c�

�
b
2

�2�
is negative, then you can factor. If positive, then it is a square.

Note that they don�t have to look so nice.

Example 15. Complete the square to rewrite x2 + 4x+ 2:

Solution 9. To form a square, we write
�
x2 + 4x+ 4

�
+2� 4 = (x+ 2)2�

p
2
2
=�

x+ 2 +
p
2
� �
x+ 2�

p
2
�
:

Now, to do antiderivatives, we need to be able to integrate things of the form

� � ��
(x� a) (x� b)

(where a 6= b) or
� � ��
x2 + a2

The �rst uses partial fractions and the second uses trig substition.
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4.2. Partial fractions. Partial fractions is a way of undo-ing getting a common
denominator. You are probably familiar with getting a common denominator:

1

x+ 2
� 1

x� 8 =
�10

(x+ 2) (x� 8) :

Conversely, we can start with the right side and try to get the left. How do we
do this? One way is to just assume that this can be done, and solve for the right
numbers:

�10
(x+ 2) (x� 8) =

A

x+ 2
+

B

x� 8
for some choice of (numbers) A and B: Then we get a common denominator, or
cross multiply, to get

�10 = A (x� 8) +B (x+ 2) :
This must be true FOR ALL VALUES OF x; and so we can plug in values of x
until we can �nd A and B: If we are smart, we can save ourselves some work: try
x = 8 and x = �2: Then we get

10B = �10
so B = �1 and

�10A = �10
and so A = 1: This tells us that

1

x+ 2
� 1

x� 8 =
�10

(x+ 2) (x� 8) :

We can always double check by getting a common denominator and seeing if this
is right.

Remark 1. The book does this slightly di¤erent, looking at the equation for A and
B and equating the coe¢ cients of x and the constant terms. This is, of course,
correct, but my way is usually faster and just as correct.

Now one can calculate the antiderivativeZ �10
(x+ 2) (x� 8)dx =

Z �
1

x+ 2
� 1

x� 8

�
dx

= ln jx+ 2j � ln jx� 8j+ C

= ln

����x+ 2x� 8

����+ C:
What more can we do with these kinds of problems:

� Maybe you need to factor the denominator. Consider the problem of �nding
the antiderivative Z

1

x2 � 2x� 3dx:

First we factor the denominator:
1

x2 � 2x� 3 =
1

(x� 3) (x+ 1) :

Then we do partial fractions:
1

x2 � 2x� 3 =
A

x� 3 +
B

x+ 1
1 = A (x+ 1) +B (x� 3)
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and so, using x = �1 and x = 3; we get B = � 1
4 and A =

1
4 ; so

1

x2 � 2x� 3 =
1=4

x� 3 �
1=4

x+ 1

and the antiderivative isZ
1

x2 � 2x� 3dx =
1

4
ln jx� 3j � 1

4
ln jx+ 1j+ C

= ln

����x� 3x+ 1

����1=4 + C:
� You can have polynomials in the numerator:

3x� 1
(x+ 2) (x+ 10)

:

This works the same way, as long as the numerator has a lower degree than
the denominator. If not, you need to do long division �rst!

� See book for the entire strategy for integrating a polynomial over another
polynomial on p. 355.

4.3. Trig substitution. We can do an integral of a function of the form x
x2+a2

easily using a substition:Z
x

x2 + a2
dx =

1

2
ln
��x2 + a2��+ C

but for a function of the form 1
x2+a2 ; it is harder. We have a very good trick. Try

x = a tan �: Then dx = a sec2 x d� and we getZ
1

x2 + a2
dx =

Z
a sec2 x

a2 tan2 � + a2
d�

=

Z
1

a
d�

since tan2 � + 1 = sec2 �: HenceZ
1

x2 + a2
dx =

1

a
arctan

x

a
+ C:

Example 16. Find the antiderivative:
R

4x�5
x2+4x+3dx:

Solution 10. Completing the square/factoring followed by partial fractions gives
us Z

4x� 5
x2 + 4x+ 3

dx =

Z
4x� 5

(x+ 3) (x+ 1)
dx

=

Z �
17

2 (x+ 3)
� 9

2 (x+ 1)

�
dx

=
17

2
ln jx+ 3j � 9

2
ln jx+ 1j+ C

:

Example 17. Find the antiderivative:
R

4x�5
x2+4x+8dx
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Solution 11. Completing the square, we getZ
4x� 5

x2 + 4x+ 8
dx =

Z
4x� 5

(x+ 2)
2
+ 22

dx:

Now we can subsitution w = x+ 2; to get the integralZ
4x� 5

(x+ 2)
2
+ 22

dx =

Z
4w � 13
w2 + 22

dw

We now do the two parts separately. The �rst is a substitution u = w2 + 4; du =
2w dw; Z

4w

w2 + 22
dw =

Z
2

u
dw = 2 ln juj+ C = 2 ln

���(x+ 2)2 + 4���+ C:
For the second, we can do a trig substitution w = 2 tan �; dx = 2 sec2 � d� to getZ

13

(x+ 2)
2
+ 22

dx = 13

Z
2 sec2 �

4 tan2 � + 4
d�

=
13

2
arctan

x+ 2

2
+ C

We arrive atZ
4x� 5

(x+ 2)
2
+ 22

dx = 2 ln
���(x+ 2)2 + 4���� 13

2
arctan

x+ 2

2
+ C:

4.4. Long division. One may also need to do long division. If you have a quotient
of polynomials p (x) =q (x) and the degree on the top is not smaller than the degree
on the bottom, you can divide. We will only use easy division of the type below:

Example 18. Use division to simplify x2

x2�1 :

Solution 12. The easiest is to just add and subtract to the top, instead of doing
actual long division:

x2

x2 � 1 =
x2 � 1 + 1
x2 � 1 =

x2 � 1
x2 � 1 +

1

x2 � 1 = 1 +
1

x2 � 1 :

Example 19. Use division to simplify x3

x2�1 :

Solution 13. Same idea:
x3

x2 � 1 =
x3 � x+ x
x2 � 1 =

x3 � x
x2 � 1 +

x

x2 � 1 = x+
x

x2 � 1 :

We can now compute antiderivatives using the table.

Example 20. Find the antiderivative:
R

x2

x2�1dx

Solution 14. Use partial fractions:Z
x2

x2 � 1dx =
Z �

1 +
1

x2 � 1

�
dx

=

Z �
1 +

1

(x+ 1) (x� 1)

�
dx

=

Z �
1 +

1

2 (x� 1) �
1

2 (x+ 1)

�
dx

= x+
1

2
(ln jx� 1j � ln jx+ 1j) + C
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Example 21. Find the antiderivative:
R

x3

x2�1dx:

Solution 15. Use partial fractions:Z
x3

x2 � 1dx =
Z �

x+
x

x2 � 1

�
dx

=

Z �
x+

x

(x+ 1) (x� 1)

�
dx

=

Z �
x+

1

2 (x� 1) +
1

2 (x+ 1)

�
dx

=
1

2
x2 +

1

2
(ln jx� 1j+ ln jx+ 1j) + C

4.5. Partial fractions in more generality.
� You can have more terms in the denominator, for instance

1

(x+ 1) (x� 9) (x+ 6) :

In this case, you do the same thing:

1

(x+ 1) (x� 9) (x+ 6) =
A

x+ 1
+

B

x� 9 +
C

x+ 6

and proceed.
� You may not have linear terms in the denominator:

1

(x2 + 1) (x� 9)
can be rewritten as

Ax+B

x2 + 1
+

C

x� 9 :

and
1

(x4 + 8) (x+ 3)

can be rewritten as
Ax3 +Bx2 + Cx+D

x4 + 8
+

E

x+ 3
:

� You can have powers in the denominator:
x2 � 2

(x+ 1)
2
(x+ 6)

:

In this case you have to be careful:

x2 � 2
(x+ 1)

2
(x+ 6)

=
Ax+B

(x+ 1)
2 +

C

(x+ 6)

or you can consider this like

A (x+ 1) +D

(x+ 1)
2 +

C

(x+ 6)
=

A

(x+ 1)
+

D

(x+ 1)
2 +

C

(x+ 6)
:

Let�s do this one, since it is a bit more tricky:

x2 � 2
(x+ 1)

2
(x+ 6)

=
x2 � 2

(x+ 1)
2
(x+ 6)
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so
x2 � 2 = A (x+ 1) (x+ 6) +D (x+ 6) + C (x+ 1)2 :

So we can take x = �1 to get �1 = 5D; so D = �1=5: Now we take x = �6
to get 34 = 25C; so C = 34=25: How do we �nd A? We just pick any value
of x we want and use our C and D that we already found. I am partial to
x = 0; so

�2 = 6A� 6
5
+
34

25

A = � 9

25
:

We get

x2 � 2
(x+ 1)

2
(x+ 6)

=
� 9
25

(x+ 1)
�

1
5

(x+ 1)
2 +

34
25

(x+ 6)
:

We can also compute the antiderivative:Z
x2 � 2

(x+ 1)
2
(x+ 6)

dx =

Z  � 9
25

(x+ 1)
�

1
5

(x+ 1)
2 +

34
25

(x+ 6)

!
dx

= � 9

25
ln jx+ 1j+ 1

5 (x+ 1)
+
34

25
ln jx+ 6j+ C

4.6. Trig substitution for roots. What if we have something bad likeZ
1p
1� x2

dx

(and we don�t remember that it is actually arcsinx + C)? We can get a lot of
mileage out of the identity:

sin2 x+ cos2 x = 1

and its related relations

tan2 x+ 1 = sec2 x =
1

cos2 x

1 + cot2 x = csc2 x =
1

sin2 x
:

You see, if x = sinw; then
p
1� x2 =

p
1� sin2 w = cosw; which is better. So

let�s try that as a substitution:

x = sinw

dx = cosw dw

and so Z
1p
1� x2

dx =

Z
1p

1� sin2 w
cosw dw

=

Z
dw

= w + C

= arcsinw + C:
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Magic! Sometimes it works, and sometimes it doesn�t. We just need to be slick.
Notice that this kind of substitution looks like it is backwards from the other, as
we write x as a function of w!
Here�s a similar one: Z

1p
9� x2

dx:

This time we want to substitute x = 3 sinw: Try it.
What is this kind of integration good for? See this:

� Stu¤ with
p
a2 � x2 in it. Try x = a sinw:

� Stu¤ with a2 + x2 or
p
a2 + x2: Try x = a tanw:

� Sometimes you need to be a bit more slick:Z
1p

16� 25x2
dx =

1

5

Z
1q

16
25 � x2

dx

and then you are good.
� Sometimes you need to complete the square to do thisZ

1

x2 + x+ 2
dxZ

1p
9 + x� x2

dx

More examples: Z
1

t2
p
t2 + 1

dt =

Z
1

cos2 � tan2 �
p
sec2 �

d�

=

Z
cos �

sin2 �
d�

= � 1

sin �
+ C

= � 1

sin arctan t
+ C

= �
p
1 + t2

t
+ C

= �
r
1

t2
+ 1 + CZ

1p
x2 � x+ 2

dx

5. Integration by tables

You would think integrating using a table would be very easy, but you�d be
wrong. The table only has a few forms, and so to use them, you need a few things:

� Be familiar with the table. The table often requires you to �gure out
the value of a parameter, for instance the table might have an entry likeR

1
cosn xdx; so you need to �gure out what n is in your particular problem.

There may be restrictions on n; like it must be positive or even or something.
Be careful.
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� The table entries may require you to understand a fairly large sum. Try to
understand the entries by doing examples.

� You may need to transform your integral to get it to look like a table
entry. Usually this means substitution, factoring, completing the square,
long division, sometimes others.

Example 22. Find the antiderivative:
R �
x3 � 2x+ 6

�
sin 3x dx

Example 23. Find the antiderivative:
R
cos5 x dx

There are some more techniques that are pretty useful:

Example 24. Find the antiderivative:
R

1p
x2+6x+8

dx

5.1. Summary. Things to keep in mind:
� Be careful what your variable name is and if you need to do a substitution!
� Be careful with reading the table, especially to see which formula applies.

6. Numerical integration

Quite often you will �nd that you need to calculate de�nite integrals even if you
cannot compute explicit expression. We have already seen left and right Riemann
sums. These are generally poor, as you can see graphically. To correct them, we
have two approaches:
1) Midpoint rule: use the midpoint instead of the left or right endpoints.
2) Trapezoid rule: average the left and right sums.
Both of these give much better approximations to the integral!
Example:

R 1
0
x2dx = 1

3 : Now let�s compute this with left, right, midpoint, trape-
zoid rules

http://www.zweigmedia.com/RealWorld/integral/integral.html
http://www.hostsrv.com/webmaa/app1/MSPScripts/webm1010/simpson.jsp


