Practice for Test 3

- 1) Chapter 8 Check Your Understanding: 13, 15, 16
 - 2) Chapter 8 Review: 57, 59, 61
- 3) Chapter 9 Check Your Understanding: 5, 9, 11, 12, 13, 15, 17, 19, 21, 23, 27, 29, 33, 37, 39, 41, 43,
- 4) Chapter 9 Review: 23, 25, 27, 29, 31, 35, 37, 49, 51, 57
- 5) Chapter 10 Check Your Understanding: 1, 3, 5,
 - 6) Chapter 10 Review: 9, 11, 15, 28, 30, 33, 35, 41
- 7) Chapter 11 Check Your Understanding: 1, 3, 5,
- 8) Chapter 11 Review: 1, 2, 5, 7, 9, 11, 15, 23, 25,
- 9) State if the following are true or false. Be sure to justify your answers and correct if false.
- a) If the power series $\sum_{n=0}^{\infty} b_n (x-4)^n$ has radius of convergence 5 then the series converges for $-5 \le$ $x \leq 5$.
- b) The Taylor series for $\frac{1}{1-x}$ centered at x=0 has radius of convergence equal to infinity.
- 10) Write the first four nonzero terms in the Taylor series for the following functions.
- a) $\sin(x)$ around x = 0. b) $\cos 3x$ around x =c) xe^x around x=0.
- d) $\frac{1}{x}$ around x = 1. e) $\arctan(x)$ around x = 0. f) $\ln(-x)$ around x = -1. g) $x^4 + 2x$ around x = 0. h) $x^4 + 2x$ around x = 2. f) $\frac{1}{(1-x)^3}$ around x = 0.
- 11) Find the following by recognizing the appropriate Taylor series.
- are Taylor series.
 a) $1 + (0.1)^2 + (0.1)^3 + (0.1)^4 + (0.1)^5 + \cdots$ b) $\sum_{n=1}^{\infty} \frac{(0.3)^n}{n}$ c) $1 \frac{1}{2} + \frac{1}{6} \frac{1}{24} + \frac{1}{120} \cdots$ d) $1 + x^2 + x^4 + x^6 + x^8 + \cdots$ e) $\sum_{n=1}^{\infty} 2^n \frac{x^n}{n!}$ f) $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+3}}{(2n+3)!}$
- 12) Decide which of the following series converge and which diverge. Compute the sum if possible.

$$\sum_{n=1}^{\infty} \frac{1}{2^n}, \sum_{n=1}^{\infty} \frac{1}{\frac{1}{2^2}}, \sum_{n=1}^{\infty} \frac{1}{\frac{1}{n^{1.2}}}, \sum_{n=1}^{\infty} n^{-1}, \sum_{n=1}^{\infty} \frac{1}{n \ln n}, \sum_{n=1}^{\infty} \frac{1}{e^n}$$

- 13) True/False, if false correct:
- a) All geometric series converge.
- b) For any p, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. c) The density function and the cumulative distribution function are the same.
- d) If $\int_{1}^{\infty} f(x) dx$ converges, then $\sum_{n=1}^{\infty} f(n)$ con-
- e) The sequence 1, 1/2, 1/3, 1/4, 1/5, ... converges.
- f) The series $\sum_{n=2}^{\infty} \frac{n^2-1}{n^2}$ converges.

$$\sum_{n=2}^{9} 7 \frac{1}{3^n} = \frac{7 \left(1 - \frac{1}{3^9}\right)}{1 - \frac{1}{3}}$$

14) Compute the radius of convergence for the fol-

lowing power series.
a)
$$\sum_{n=1}^{\infty} \frac{n^2}{(n+1)^2} (x-3)^n \qquad \text{b}$$

$$\sum_{n=0}^{\infty} \frac{9^n (n+1)^3}{n!} (x+1)^n \qquad \text{c}) \sum_{n=3}^{\infty} n (-3)^n x^{2n+1}$$
d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^3} (x-4)^{2n}$$

- 15) a) Use Taylor series to put the following functions in order from smallest to largest for positive values of x near zero: $1 - x + x^2$, $\frac{1}{1+x}$, e^{-x} , $\cos x$, 1-x
- b) Now do the same for negative values of x near
 - 16) a) Write 5 12i in the form $R e^{i\theta}$.
 - b) Write $6e^{i(5\pi/4)}$ in the form a + bi.
 - c) Using $(e^{i\theta})^2 = e^{2i\theta}$, show that

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\sin 2\theta = 2\sin \theta \cos \theta.$$

d) By differentiating $e^{i\theta}$, derive the derivatives of $\cos \theta$ and $\sin \theta$.