Practice for Test 3

- 1) Chapter 8 Check Your Understanding: 13, 15, 16
 - 2) Chapter 8 Review: 57, 59, 61
- 3) Chapter 9 Check Your Understanding: 5, 9, 11, 12, 13, 15, 17, 19, 21, 23, 27, 29, 33, 37, 39, 41, 43,
- 4) Chapter 9 Review: 23, 25, 27, 29, 31, 35, 37, 49,
- 5) Chapter 10 Check Your Understanding: 1, 3, 5,
 - 6) Chapter 10 Review: 9, 11, 15, 28, 30, 33, 35, 41
- 7) Chapter 11 Check Your Understanding: 1, 3, 5, 8, 9, 10
- 8) Chapter 11 Review: 1, 2, 5, 7, 9, 11, 15, 23, 25,
- 9) State if the following are true or false. Be sure to justify your answers and correct if false.
- a) If the power series $\sum_{n=0}^{\infty} b_n (x-4)^n$ has radius of convergence 5 then the series converges for $-5 \le$ $x \leq 5$.

False: If it has radius of convergence 5, it converges for -1 < x < 9 (since it is centered at 4).

b) The Taylor series for $\frac{1}{1-x}$ centered at x=0 has radius of convergence equal to infinity.

False: We know it has radius of convergence equal to 1.

- 10) Write the first four nonzero terms in the Taylor series for the following functions.
- a) $\sin(x)$ around x = 0. Taylor polynomial is x 1
- $\frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!}$ b) $\cos 3x$ around x = 0. Taylor polynomial is $1 \frac{3^2x^2}{2!} + \frac{3^4x^4}{4!} \frac{3^6x^6}{6!}$ c) xe^x around x = 0. Taylor polynomial is $x + x^2 + \frac{x^3}{2!} + \frac{x^4}{4!} \frac{x^4}{4!} \frac{x^4}{4!} \frac{x^4}{4!} \frac{x^4}{4!}$
- $\frac{x^3}{2} + \frac{x^4}{3!}$ d) $\frac{1}{x}$ around x = 1. Taylor polynomial is $1 (x-1)^1 + (x-1)^2 (x-1)^3$.
- e) $\arctan(x)$ around x = 0. Taylor polynomial is $x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7$
- f) $\ln(-x)$ around x = -1. Taylor polynomial is $-(x+1) - \frac{1}{2}(x+1)^2 - \frac{1}{3}(x+1)^3 - \frac{1}{4}(x+1)^4$ g) $x^4 + 2x$ around x = 0. Taylor polynomial is $2x + x^4$

- h) $x^4 + 2x$ around x = 2. Taylor polynomial is
- $20 + 34(x 2) + 24(x 2)^{2} + 8(x 2)^{3}.$ f) $\frac{1}{(1-x)^{3}}$ around x = 0. Taylor polynomial is 1 + x = 0 $3x + 6x^2 + 10x^3$
- 11) Find the following by recognizing the appropriate Taylor series.
- a) $1 + (0.1)^2 + (0.1)^3 + (0.1)^4 + (0.1)^5 + \dots = \frac{1}{1-1} = 0$

- b) $\sum_{n=1}^{\infty} \frac{(0.3)^n}{n} = -\ln(0.7) = \ln\frac{10}{7}$ c) $1 \frac{1}{2} + \frac{1}{6} \frac{1}{24} + \frac{1}{120} \dots = e^{-1}$ d) $1 + x^2 + x^4 + x^6 + x^8 + \dots = \frac{1}{1 x^2}$
- e) $\sum_{n=1}^{\infty} 2^n \frac{x^n}{n!} = e^{2x} 1$ f) $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+3}}{(2n+3)!} = \sin x x$
- 12) Decide which of the following series converge and which diverge. Compute the sum if possible. Justify your answer:

 $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} \frac{1}{1 - \frac{1}{2}} = 1$. Geometric series with ratio

 $\frac{1}{2} < 1.$ $\sum_{n=1}^{\infty} \frac{1}{2^2} \text{ Diverges (limit of terms is not zero)}.$ $\sum_{n=1}^{\infty} \frac{1}{n^{1.2}} \text{ converges (p-test with } p > 1 \text{ or integral}$ $\sum_{n=1}^{\infty} n^{-1}$ diverges (harmonic series or p-test with

p < 1 or integral test) $\sum_{n=1}^{\infty} \frac{1}{n^{0.2}}$ diverges (p-test with $p \leq 1$ or integral

 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (p-test with p>1 or integral

 $\begin{array}{l} \sum_{n=1}^{\infty} \frac{1}{n \ln n} \text{ diverges (integral test)} \\ \sum_{n=1}^{\infty} \frac{1}{e^n} = \frac{1}{e} \frac{1}{1 - \frac{1}{e}}. \text{ Geometric series with ratio } \frac{1}{e} < \end{array}$

- 13) True/False, if false correct:
- a) All geometric series converge. False. Geometric series with ratio r, |r| < 1, converge.
- b) For any p, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. False, p > 1 converge.
- c) The density function and the cumulative distribution function are the same. Should not be there.
- d) If $\int_{1}^{\infty} f(x) dx$ converges, then $\sum_{n=1}^{\infty} f(n)$ converges. False, need f(x) to be positive and decreasing, then true.
- e) The sequence 1, 1/2, 1/3, 1/4, 1/5, ... converges. True, converges to 0.

f) The series $\sum_{n=2}^{\infty} \frac{n^2-1}{n^2}$ converges. Diverges since the limit of the terms is 1.

g)

$$\sum_{n=2}^{9} 7 \frac{1}{3^n} = \frac{7\left(1 - \frac{1}{3^9}\right)}{1 - \frac{1}{3}}$$

False:

$$\sum_{n=2}^{9} 7 \frac{1}{3^n} = \frac{7 \left(1 - \frac{1}{3^8}\right)}{1 - \frac{1}{3}}$$

14) Compute the radius of convergence for the fol-

a) $\sum_{n=1}^{\infty} \frac{n^2}{(n+1)^2} (x-3)^n$. Radius of convergence is

b) $\sum_{n=0}^{\infty} \frac{9^n (n+1)^3}{n!} (x+1)^n$. Radius of convergence

c) $\sum_{n=3}^{\infty} n (-3)^n x^{2n+1}$. Radius of convergence is $1/\sqrt{3}$.

d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^3} \left(x-4\right)^{2n}$. Radius of convergence is

15) a) Use Taylor series to put the following functions in order from smallest to largest for positive values of x near zero: $1 - x + x^2$, $\frac{1}{1+x}$, e^{-x} , $\cos x$, 1 - x

$$1 - x \le e^{-x} \le 1 - x + x^2 \le \frac{1}{1+x} \le \cos x$$

b) Now do the same for negative values of x near zero.

 $\begin{array}{l} \cos x \leq 1-x \leq e^{-x} \leq 1-x+x^2 \leq \frac{1}{1+x} \\ \text{16) a) Write 5 - 12}i \text{ in the form } R \quad e^{i\theta}. \end{array}$

 $13e^{i\left(-\arctan\frac{12}{5}\right)}$

b) Write $6e^{i(5\pi/4)}$ in the form a + bi. $6\cos\frac{5\pi}{4}$ + 6 $i\sin\frac{5\pi}{4} = -3\sqrt{2} - 3i\sqrt{2}$ c) Using $(e^{i\theta})^2 = e^{2i\theta}$, show that

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\sin 2\theta = 2\sin \theta \cos \theta.$$

d) By differentiating $e^{i\theta}$, derive the derivatives of $\cos \theta$ and $\sin \theta$.