Differential Equations

November 13, 2013

1. Easy: Show that $y = x^2$ is a solution to xy' = 2y.

Harder: Find the values of k for which $y = x^2 + k$ is a solution to 2y - xy' = 6.

2. Easy: Show that $y = e^{kx}$, where k is a constant, is a solution to $\frac{dy}{dx} = ky$.

Harder: Show that for any constants A, $y = Ae^{kx}$ is a solution to $\frac{dy}{dx} = ky$.

Hard: Find a solution to $\frac{dy}{dx} = ky$ that satisfies y(0) = 6.

3. Easy: Show that $y = \sin \omega t$, where ω is a constant, is a solution to $\frac{d^2y}{dt^2} + \omega^2 y = 0$.

Easy: Show that $y = \cos \omega t$, where ω is a constant, is a solution to $\frac{d^2y}{dt^2} + \omega^2 y = 0$.

Harder: Show that for any constants A and B, $y=A\sin\omega t+B\cos\omega t$ is a solution to $\frac{d^2y}{dt^2}+\omega^2y=0$.

Hard: Find a solution to $\frac{d^2y}{dt^2} + \omega^2 y = 0$ that satisfies y(0) = 2, $\frac{dy}{dt}(0) = 3$.

4. Harder: For which of the following differential equations is y = 2x a solution?

a.
$$\frac{dy}{dx} = 2$$

b.
$$\frac{dy}{dx} = y/x$$

c.
$$\frac{d^2y}{dx^2} = 0$$

$$d. \frac{d^3y}{dx^3} = y - x$$

e.
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = 6$$