Power series and Taylor series 1

October 31, 2013

- 1. Find the radius of convergence and interval of convergence for the following power series:
 - a. Easy:

$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}.$$

b. Easy:

$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{n^2}$$

c. Harder:

$$\sum_{n=0}^{\infty} \frac{x^n}{n}$$

d. Harder:

$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{n!}$$

e. Hard:

$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^{2n}}{3^n}$$

f. Hard:

$$\sum_{n=0}^{\infty} (n!) x^n$$

- 2. Find the Taylor polynomial of degree 5 and the Taylor series for the following functions centered at the given points. Compute the radius of convergence.
 - a. Easy: e^x centered at 0.

b. Easy: 1/(1+x) centered at 0.

c. Harder: $x^3 + x^6$ centered at 2.

d. Harder: $\frac{1}{x}$ centered at 1.

e. Harder: $\frac{1}{x}$ centered at -1.

f. Hard: $\sin x$ centered at 0.

g. Hard: $\cos x$ centered at 0.

h. Hard: ln(1+x) centered at 0.

i. Hard: $\arctan(x)$ centered at 0.