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1. Fourier series

We saw before that the set of functions {1, cos(x), sin(x),
cos(2x), sin(2x), · · · , cos(mx), sin(mx), · · · }, where m is a
non-negative integer, forms a complete orthogonal basis of the
space of square integrable functions on [−π, π].

This means that we can define the Fourier series of any square
integrable function on [−π, π] as

f (x) = a0 +
∞∑

n=1

[an cos(nx) + bn sin(nx)] ,

where a0 =
1

2π

∫ π

−π
f (x) dx and, for n ≥ 1,

an =
1

π

∫ π

−π
f (x) cos(nx) dx and bn =

1

π

∫ π

−π
f (x) sin(nx) dx .
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Convergence of Fourier series

If f is continuously differentiable on [−π, π] except at
possibly a finite number of points where it has a left-hand and
a right-hand derivative, then the partial sum

fN(x) = a0 +
N∑

n=1

[an cos(nx) + bn sin(nx)]

with the ai defined above, converges to f (x) as N → ∞ if f is
continuous at x . At a point of discontinuity, the Fourier series
converges towards

1

2

[
f (x+) + f (x−)

]
.
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Convergence of Fourier series (continued)

Examples:
Calculate the first three non-zero Fourier coefficients of the
rectangular wave function

f (x) =

{ −π
4 if − π < x ≤ 0

π
4 if 0 < x ≤ π

and f (x+2π) = f (x).

To what value does the above Fourier series converge if
x = 0?
x = 1?
x = π?

Experiment with the MIT applet called Fourier Coefficients.

Gibbs phenomenon: Near a point of discontinuity x0, the
partial sums fN(x) exhibits oscillations which, for small values
of N, are noticeable even far from x0. As N → ∞, the
oscillations get “compressed” near x0 but never disappear.
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2. Fourier series for 2L-periodic functions

If instead of being 2π-periodic, the function f has period 2L,
we can obtain its Fourier series by re-scaling the variable x .

Indeed, let g(v) = f

(
v L

π

)
. Then, g is 2π-periodic and one

can write down its Fourier series as before. Going back to the
x-variable, one obtains

f (x) = a0 +
∞∑

n=1

[
an cos

(
n
πx

L

)
+ bn sin

(
n
πx

L

)]
,

where a0 =
1

2L

∫ L

−L
f (x) dx and, for n ≥ 1,

an =
1

L

∫ L

−L
f (x) cos

(
n
πx

L

)
dx , bn =

1

L

∫ L

−L
f (x) sin

(
n
πx

L

)
dx .
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3. Even and odd functions

From the above formula, it is easy to see that

If f is even, then the bn’s are all zero, and the Fourier series
of f is a Fourier cosine series, i.e.

f (x) = a0 +
∞∑

n=1

[
an cos

(
n
πx

L

)]
.

Its non-zero coefficients are given by

a0 =
1

L

∫ L

0
f (x) dx , an =

2

L

∫ L

0
f (x) cos

(
n
πx

L

)
dx .

Similarly, if f is odd, then the an’s are all zero, and the
Fourier series of f is a Fourier sine series,

f (x) =
∞∑

n=1

[
bn sin

(
n
πx

L

)]
, bn =

2

L

∫ L

0
f (x) sin

(
n
πx

L

)
dx .
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4. Complex form of the Fourier series

The Fourier series of a function f ,

f (x) = a0 +
∞∑

n=1

[
an cos

(
n
πx

L

)
+ bn sin

(
n
πx

L

)]
,

can be re-written in complex form as

f (x) =
∞∑

n=−∞
cn exp

(
i n

πx

L

)
,

where the complex coefficients cn are given by

cn =
1

2L

∫ L

−L
f (x) exp

(
−i n

πx

L

)
dx , n = 0, ±1, ±2, · · · .
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5. Half-range expansions

Sometimes, if one only needs a Fourier series for a function
defined on the interval [0, L], it may be preferable to use a
sine or cosine Fourier series instead of a regular Fourier series.

This can be accomplished by extending the definition of the
function in question to the interval [−L, 0] so that the
extended function is either even (if one wants a cosine series)
or odd (if one wants a sine series).

Such Fourier series are called half-range expansions.

Example: Find the half-range sine and cosine expansions of
the function f (x) = 1 on the interval [0, 1].
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6. Forced oscillations

Consider the forced and damped oscillator described by
ay ′′ + by ′ + cy = f (x), where b2 − 4ac < 0, b is positive and
small, and f is a periodic forcing function.

We know that the general solution to this equation is the sum
of a particular solution and the general solution to the
homogeneous equation, i.e. y(x) = yh(x) + yp(x).

Since the equation is linear, the principle of superposition
applies. Using Fourier series, we can think of f as a
superposition of sines and cosines. As a consequence, if one of
the terms in the forcing has a frequency close to the natural
frequency of the oscillator, one can expect the solution to be
dominated by the corresponding mode.

See the MIT applet called Harmonic Frequency Response.
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