Chapters 7-8: Linear Algebra Sections 7.5, $7.8 \& 8.1$

1. Linear systems of equations

- A linear system of equations of the form

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

can be written in matrix form as $A X=B$, where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Solution(s) of a linear system of equations

(1) Given a matrix A and a vector B, a solution of the system $A X=B$ is a vector X which satisfies the equation $A X=B$.
(2) If B is not in the column space of A, then the system $A X=B$ has no solution. One says that the system is not consistent. In the statements below, we assume that the system $A X=B$ is consistent.
(3) If the null space of A is non-trivial, then the system $A X=B$ has more than one solution.
(1) The system $A X=B$ has a unique solution provided $\operatorname{dim}(\mathcal{N}(A))=0$.
(5) Since, by the rank theorem, $\operatorname{rank}(A)+\operatorname{dim}(\mathcal{N}(A))=n$ (recall that n is the number of columns of A), the system $A X=B$ has a unique solution if and only if $\operatorname{rank}(A)=n$.

Row operations.

- There are three types of row operations:
(1) Multiply a nonzero constant times an entire row. $\left(r_{i} \rightarrow a r_{i}\right)$
(2) Exchange rows. $\left(r_{i} \rightarrow r_{j}\right.$ and $\left.r_{j} \rightarrow r_{i}\right)$
(3) Add a multiple of one row to another. $\left(r_{i} \rightarrow a r_{j}+r_{i}\right)$
- Row operations do not change the span of the row space.
- There are corresponding column operations, which do not change the column space.

Row operations to solve linear systems.

Row operations can be used to solve a linear system $A X=B$

$$
\begin{aligned}
-x-4 y+z & =10 \\
x+y-2 z & =2 \\
2 x-y-5 z & =3
\end{aligned}
$$

- Write an augmented matrix $(A \mid B)$.

$$
\left(\begin{array}{ccc|c}
-1 & -4 & 1 & 10 \\
1 & 1 & -2 & 2 \\
2 & -1 & -5 & 16
\end{array}\right)
$$

- Use row operations to get zeroes in the first column:

$$
\left(\begin{array}{ccc:c}
-1 & -4 & 1 & 10 \\
0 & -3 & -1 & 12 \\
0 & -9 & -3 & 36
\end{array}\right) \begin{gathered}
\\
r_{1}+r_{2} \\
2 r_{1}+r_{3}
\end{gathered}
$$

$$
\left(\begin{array}{ccc|c}
-1 & -4 & 1 & 10 \\
0 & -3 & -1 & 12 \\
0 & -9 & -3 & 36
\end{array}\right)
$$

- Do the same with the next column:

$$
\left(\begin{array}{ccc:c}
-1 & -4 & 1 & 10 \\
0 & -3 & -1 & 12 \\
0 & 0 & 0 & 0
\end{array}\right) \quad-3 r_{2}+r_{3}
$$

- This is equivalent to the simplified system

$$
\begin{aligned}
-x-4 y+z & =10 \\
-3 y-z & =12 \\
0 & =0
\end{aligned}
$$

- To solve the system, use back substitution.

Row operations to compute the rank of a matrix.

- Given a matrix A, row operations do not change the row space.
- Since the matrix

$$
A=\left(\begin{array}{cccc}
-1 & -4 & 1 & 10 \\
1 & 1 & -2 & 2 \\
2 & -1 & -5 & 16
\end{array}\right)
$$

can be made into the matrix

$$
A^{\prime}=\left(\begin{array}{cccc}
-1 & -4 & 1 & 10 \\
0 & -3 & -1 & 12 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

by doing row operations, the two matrices have the same row spaces.

- It is easy to see that the first two rows are linearly independent, so the rank is 2 .

Consistency

- The system $A X=B$ is consistent, i.e., has a solution if (equivalently):
(1) Gaussian elimination on the augmented matrix $(A \mid B)$ yields a matrix of the form:

$$
\left(\begin{array}{cccccccc:c}
a_{1} & * & * & & & & & & b_{1} \\
0 & a_{2} & * & * & & & & & b_{2} \\
0 & 0 & 0 & a_{3} & * & * & & & \ldots \\
0 & 0 & 0 & 0 & \ldots & * & * & & \\
0 & 0 & 0 & 0 & 0 & 0 & a_{r} & * & b_{r} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

i.e., any rows reduced to all zeroes before the line are also zero after the line.
(2) The rank of $(A \mid B)$ is equal to the rank of A.

Inconsistency

- The system $A X=B$ is inconsistent, i.e., has NO SOLUTION if (equivalently):
(1) Gaussian elimination on the augmented matrix $(A \mid B)$ yields a matrix of the form:

$$
\left(\begin{array}{cccccccc|c}
a_{1} & * & & & & & & & b_{1} \\
0 & a_{2} & * & * & & & & & b_{2} \\
0 & 0 & 0 & a_{3} & * & & & & \ldots \\
0 & 0 & 0 & 0 & \ldots & * & * & * & \\
0 & 0 & 0 & 0 & 0 & 0 & a_{r} & * & b_{r} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{r+1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where $b_{r+1} \neq 0$, i.e., there is a row of zeroes before the line with a nonzero element after the line.
(2) The rank of $(A \mid B)$ is greater than the rank of A.
(3) The vector B is not in the column space of A.

Unique solutions

- The system $A X=B$ has one unique solution if (equivalently):
(1) Gaussian elimination on the augmented matrix $(A \mid B)$ yields a matrix of the form:

$$
\left(\begin{array}{ccccc:c}
a_{1} & & & & & b_{1} \\
0 & a_{2} & & & & b_{2} \\
0 & 0 & a_{3} & & & \cdots \\
0 & 0 & 0 & \ldots & & \\
0 & 0 & 0 & 0 & a_{n} & b_{n} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

i.e., there are all nonzero numbers on the "diagonal."
(2) The rank of A is equal n (which is equal to the rank of $(A \mid B)$), which is the maximum rank (so it is essential that $n \geq m$). This means that $\operatorname{dim}(\mathcal{N}(A))=0$, i.e., the nullspace is trivial.
(3) The columns of A form a basis for the column space.

Infinitely many solutions

- The system $A X=B$ has lots of solutions if (equivalently):
(1) Gaussian elimination on the augmented matrix $(A \mid B)$ yields a matrix of the form:

$$
\left(\begin{array}{cccccccc:c}
a_{1} & * & * & & & & & & b_{1} \\
0 & a_{2} & * & * & & & & & b_{2} \\
0 & 0 & 0 & a_{3} & * & * & & & \cdots \\
0 & 0 & 0 & 0 & \ldots & * & * & & \\
0 & 0 & 0 & 0 & 0 & a_{r} & * & * & b_{r} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

i.e., there are zeroes on the diagonal and/or the last diagonal nonzero element is not next to the line \mid.
(2) The rank of A is less than n. This is equivalent to $\operatorname{dim}(\mathcal{N}(A))>0$.
(3) The columns of A do not form a basis of the column space.

Solution(s) of a linear system of equations (continued)

(1) A linear system of the form $A X=0$ is said to be homogeneous.
(2) Solutions of $A X=0$ are vectors in the null space of A.
(3) If we know one solution X_{0} to $A X=B$, then all solutions to $A X=B$ are of the form

$$
X=X_{0}+X_{h}
$$

where X_{h} is a solution to the associated homogeneous equation $A X=0$.
(9) In other words, the general solution to the linear system $A X=B$, if it exists, can be written as the sum of a particular solution X_{0} to this system, plus the general solution of the associated homogeneous system.

2. Inverse of a matrix

- If A is a square $n \times n$ matrix, its inverse, if it exists, is the matrix, denoted by A^{-1}, such that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

where I_{n} is the $n \times n$ identity matrix.

- A square matrix A is said to be singular if its inverse does not exist. Similarly, we say that A is non-singular or invertible if A has an inverse.
- The inverse of a square matrix $A=\left[a_{i j}\right]$ is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[C_{i j}\right]^{T}
$$

where $\operatorname{det}(A)$ is the determinant of A and $C_{i j}$ is the matrix of cofactors of A.

Determinant of a matrix

- The determinant of a square $n \times n$ matrix $A=\left[a_{i j}\right]$ is the scalar

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} C_{i j}=\sum_{j=1}^{n} a_{i j} C_{i j}
$$

where the cofactor $C_{i j}$ is given by

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

and the minor $M_{i j}$ is the determinant of the matrix obtained from A by "deleting" the i-th row and j-th column of A.

- Example: Calculate the determinant of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.

Properties of determinants

- If a determinant has a row or a column entirely made of zeros, then the determinant is equal to zero.
- The value of a determinant does not change if one replaces one row (resp. column) by itself plus a linear combination of other rows (resp. columns).
- If one interchanges 2 columns in a determinant, then the value of the determinant is multiplied by -1 .
- If one multiplies a row (or a column) by a constant C, then the determinant is multiplied by C.
- If A is a square matrix, then A and A^{T} have the same determinant.

Properties of the inverse

- Since the inverse of a square matrix A is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[C_{i j}\right]^{T},
$$

we see that A is invertible if and only if $\operatorname{det}(A) \neq 0$.

- If A is an invertible 2×2 matrix, $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

and $\operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12}$.

- If A and B are invertible, then

$$
(A B)^{-1}=B^{-1} A^{-1} \quad \text { and } \quad\left(A^{-1}\right)^{-1}=A
$$

Linear systems of n equations with n unknowns

- Consider the following linear system of n equations with n unknowns,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \cdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

- This system can be also be written in matrix form as $A X=B$, where A is a square matrix.
- If $\operatorname{det}(A) \neq 0$, then the above system has a unique solution X given by

$$
X=A^{-1} B
$$

Linear systems of equations - summary

Consider the linear system $A X=B$ where A is an $m \times n$ matrix.

- The system may not be consistent, in which case it has no solution.
- To decide whether the system is consistent, check that B is in the column space of A.
- If the system is consistent, then
- Either $\operatorname{rank}(A)=n$ (which also means that $\operatorname{dim}(\mathcal{N}(A))=0)$, and the system has a unique solution.
- $\operatorname{Or} \operatorname{rank}(A)<n$ (which also means that $\mathcal{N}(A)$ is non-trivial), and the system has an infinite number of solutions.

Linear systems of equations - summary (continued)

Consider the linear system $A X=B$ where A is an $m \times n$ matrix.

- If $m=n$ and the system is consistent, then
- Either $\operatorname{det}(A) \neq 0$, in which case $\operatorname{rank}(A)=n$, $\operatorname{dim}(\mathcal{N}(A))=0$, and the system has a unique solution;
- $\operatorname{Or} \operatorname{det}(A)=0$, in which case $\operatorname{dim}(\mathcal{N}(A))>0, \operatorname{rank}(A)<n$, and the system has an infinite number of solutions.
- Note that when $m=n$, having $\operatorname{det}(A)=0$ means that the columns of A are linearly dependent.
- It also means that $\mathcal{N}(A)$ is non-trivial and that $\operatorname{rank}(A)<n$.

3. Eigenvalues and eigenvectors

- Let A be a square $n \times n$ matrix. We say that X is an eigenvector of A with eigenvalue λ if

$$
X \neq 0 \quad \text { and } \quad A X=\lambda X
$$

- The above equation can be re-written as

$$
\left(A-\lambda I_{n}\right) X=0
$$

- Since $X \neq 0$, this implies that $A-\lambda I_{n}$ is not invertible, i.e. that $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
- The eigenvalues of A are therefore found by solving the characteristic equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

Eigenvalues

- The characteristic polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$ is a polynomial of degree n in λ. It has n complex roots, which are not necessarily distinct from one another.
- If λ is a root of order k of the characteristic polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$, we say that λ is an eigenvalue of A of algebraic multiplicity k.
- If A has real entries, then its characteristic polynomial has real coefficients. As a consequence, if λ is an eigenvalue of A, so is $\bar{\lambda}$.
- It A is a 2×2 matrix, then its characteristic polynomial is of the form $\lambda^{2}-\lambda \operatorname{Tr}(A)+\operatorname{det}(A)$, where the trace of $A, \operatorname{Tr}(A)$, is the sum of the diagonal entries of A.

Eigenvalues (continued)

- Examples: Find the eigenvalues of the following matrices.
- $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 5\end{array}\right]$.
- $B=\left[\begin{array}{cc}-1 & 9 \\ 0 & 5\end{array}\right]$.
- $C=\left[\begin{array}{cc}-13 & -36 \\ 6 & 17\end{array}\right]$.
- $D=\left[\begin{array}{ccc}4 & -1 & 1 \\ -1 & 4 & -1 \\ -1 & 1 & 2\end{array}\right]$.

Eigenvectors

- Once an eigenvalue λ of A has been found, one can find an associated eigenvector, by solving the linear system

$$
\left(A-\lambda I_{n}\right) X=0
$$

- Since $\mathcal{N}\left(A-\lambda I_{n}\right)$ is not trivial, there is an infinite number of solutions to the above equation. In particular, if X is an eigenvector of A with eigenvalue λ, so is αX, where $\alpha \in \mathbb{R}$ (or C) and $\alpha \neq 0$.
- The set of eigenvectors of A with eigenvalue λ, together with the zero vector, form a subspace of \mathbb{R}^{n} (or \mathbb{C}^{n}), E_{λ}, called the eigenspace of A corresponding to the eigenvalue λ.
- The dimension of E_{λ} is called the geometric multiplicity of λ.

Eigenvectors (continued)

- Examples: Find the eigenvectors of the following matrices. Each time, give the algebraic and geometric multiplicities of the corresponding eigenvalues.
- $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 5\end{array}\right]$.
- $C=\left[\begin{array}{cc}-13 & -36 \\ 6 & 17\end{array}\right]$.
- $D=\left[\begin{array}{ccc}4 & -1 & 1 \\ -1 & 4 & -1 \\ -1 & 1 & 2\end{array}\right]$.

