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1 Graph minors

Let�s revisit some de�nitions. Let G = (V;E) be a graph.

De�nition 1 Removing a vertex means removing that vertex from the vertex
set of G and removing all edges incident with that vertex from the edge set. We
denote the graph obtained from G by removing a vertex v by G� v:

De�nition 2 Removing an edge means removing that edge from the edge set.
We denote the graph obtained from G by removing an edge uv by G� uv:

De�nition 3 Suppressing a vertex of degree two means removing that vertex
and replacing the two edges incident on that vertex by a single edge.

De�nition 4 Contracting an edge e = uv means removing u and v from the
vertex set and replacing it by a new vertex z and edges such that z is adjacent
to all vertices which were adjacent to u or v:

We can now use these to de�ne induced graphs such as subgraphs as follows.
Let H and G be two graphs.

De�nition 5 H is an induced subgraph of G if H can be obtained from G by
a sequence of vertex removals. We write H �I G:

De�nition 6 H is a subgraph of G if H can be obtained from G by a sequence
of vertex and edge removals. We write H �S G:

De�nition 7 H is a topological minor of G (also called subdivision or topo-
logical subgraph) if H can be obtained from G by a sequence of vertex removals,
edge removals, and suppressions of vertices of degree two. We write H �T G:

De�nition 8 H is a minor of G if H can be obtained from G by a sequence of
vertex removals, edge removals, suppression of vertices of degree two, and edge
contractions. We write H �M G:
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Remark 9 The sequence could have length zero, so a graph is always an induced
subgraph, subgraph, topological minor, and minor of itself.

Remark 10 There is a hierarchy, since H �I G implies that H �S G which
implies that H �T G which implies that H �M G:

2 Ordering properties

De�nition 11 A relation � on a set X is called a quasi-ordering if it is re-
�exive (x � x for all x 2 X) and transitive (x � y and y � z implies x � z for
all x; y; z 2 X). We use x � y to denote y � x and y < x to denote that y � x
and y 6= x:

We think of an ordering as allowing us to compare any two things, but that
is not necessarily true.
Examples: We see easily that �I ;�S ;�T ;�M are all quasi-orderings on the

set of all graphs.

Proposition 12 If � is a quasi-ordering on X such that there is no in�nite
decreasing sequence x1 > x2 > x3 > � � � ; then for every subset Y � X there is
a set M � Y such that

1. for any y there is an element m 2M such that m � y and

2. if m;m0 2M and m 6= m0; then m and m0 are incomparable (i.e., we have
neither m � m0 nor m0 � m).

The set M is called the set of minimal elements of Y:

Proof. Omitted. It�s not so easy. See Diestel if interested.
The existence of such a minimal set is goint to be the key. This motivates

the following de�nitions.

De�nition 13 A quasi ordering is without in�nite decent if there are no in�-
nite strictly decreasing sequences x1 > x2 > x3 > � � � : An antichain A � X is
a subset such that no two elements in A are comparable.

Note that the previous proposition says for a quasi-ordering without in�nite
decent, there is an antichain M with the property 1.

De�nition 14 Let P be a property de�ned on the elements on a set X: We say
that P is closed under �; or �-closed, if for every two elements x; y 2 X; if x
has property P and y � x; then y also has property P:

Note that a property P on a set X determines a subset XP � X with the
property that x has property P if and only if x 2 XP :
As an example. The property �is bipartite� is closed under the subgraph

and induced subgraph ordering, but not under the topological minor or minor
ordering. The property �is planar�is closed under all of these orderings.
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Proposition 15 Let P be �-closed, and let M be the set of minimal elements
of the set XP c = fx 2 X : x does note satisfy property Pg : Then x has property
P if and only if there is no m 2M with m � x:

Proof. Suppose x does not have property P: Then x 2 XP c ; and since M is
the set of minimal elements of XP c ; there must be m 2 M with the property
m � x: Now suppose that x satis�es property P: Then any m such that m � x
must also satisfy property P since P is �-closed Thus if m 2 M � XP c ; then
we cannot have m � x:

De�nition 16 The minimal set M in the above proposition is called the mini-
mal forbidden set of the property.

We have seen this already with Kuratowski�s theorem, where the minimal
forbidden set of the property �is planar�on the set of graphs under the minor
relation is K3;3 and K5:

De�nition 17 A relation � on a set X is a well-quasi-ordering if for any
in�nite sequence x1; x2; : : : of elements of X; there are two indices i < j such
that xi � xj :

Proposition 18 � is a well-quasi-ordering if and only if it is a quasi-ordering
without in�nite descent and in�nite antichains.

Proof. If � is a well-quasi-ordering, then clearly there are no in�nite antichains
(otherwise there is an in�nite sequence of incomparables) and it is without in�-
nite descent (since an in�nite decreasing sequence does not satisfy the ordering
assumption. If � is not a quasi-ordering, there must be an in�nite sequence of
elements which are incomparable or strictly decreasing.
Not a lot of quasi-orderings are well-quasi-ordering.

Example 19 �I and �S are not well-quasi-orderings on the set of graphs.
(Neither is �T ). Consider the sequence of cycles C3; C4; C5; : : : of cyclic graphs.
Each of these is incomparable to each other, so it is an in�nite antichain.

Theorem 20 (Kruskal, 1960) The class of trees with the topological minor
ordering is well-quasi-ordered.

Theorem 21 (Robertson-Seymour, 1986-2004) The class of �nite graphs
is well-quasi-ordered under the minor ordering. This means that for any in�nite
sequence of graphs G1; G2; G3; : : : ; there are i < j such that Gi is a minor of
Gj :

This is nice and all, but why is this important?

Proposition 22 If � is a well-quasi-ordering and P is a �-closed property,
then the minimal forbidden set of P is �nite.
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Proof. We know that � is without in�nite descent, any subset has a minimal
set, in particular XP c does. Furthermore, that minimal set is an antichain, and
antichains must be �nite, so the minimal forbidden set is �nite.

Corollary 23 If P is a minor-closed property of graphs, then there exists a
�nite collection of graphs H1;H2; : : : ;Hk such that, for all graphs G, G has
property P if and only if G has none of H1; : : : ;Hk as a minor.

Corollary 24 For every surface S there exists a �nite set of graphs H1; : : : ;Hk
so that a graph is embeddable in S if and only if G has none of the Hi as a minor.

Note: we know this for the plane (and hence the sphere), but we do not
know what these are for even the torus.
We remark that this says that if we can decide if a graph has a particular

subgraph as a minor, then we can check to see if a graph has a property. This
can be done in polynomial time.

Theorem 25 (Robertson-Seymour, 1995) For a �xed graph H; there exists
a polynomial time algorithm to decide if a given input graph has H as a minor
or not.

Corollary 26 If P is a minor-closed property of graphs, then there exists a
polynomial time algorithm to decide if a graph has property P:

Note: this requires knowing the minimal forbidden set. This is quite di¢ cult!

3 Proof of Kuratowski�s theorem

This follows BM-9.4,9.5. We wish to prove that a graph is planar if and only if
it contains no subdivision of K5 or K3;3: First, we need some new terminology.

3.1 Bridges

First we de�ne a relation �. Let H be a subgraph of G: We de�ne � on
E (G) � E (H) by the condition that e � e0 if there exists a walk W such that
the �rst and last edges are e and e0; respectively, and no vertex of W is a vertex
of H (except possibly the ends of the walk). This is an equivalence relation (i.e,
symmetric, re�exive, transitive), so it partitions E (G)� E (H) :

De�nition 27 A subgraph of G � E (H) is a bridge if it is induced by the
equivalence relation �; i.e., if it consists of the set of all edges equivalent to a
�xed edge e 2 E (G)� E (H) :

See Figure 9.9 in BM. It is easy to see that:

1. A bridge must be connected. (In fact, any two vertices in the bridge must
be connected by a path which has vertices in H only, at most, at the ends.
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2. Two bridges have no vertices in common except possibly vertices in H: In
each bridge, any vertices in H are called vertices of attachment.

We will look at bridges associated to cycles. Henceforth, assume a bridge is
a bridge of a cycle.

De�nition 28 A bridge with k vertices of attachment is called a k-bridge. Two
k-bridges with the same vertices of attachment are called equivalent k-bridges.

De�nition 29 The vertices of attachment of a k-bridge with k � 2 partition the
cycle C into pieces called segments. Two bridges avoid one another if the ver-
tices of attachment of one bridge lie entirely in one segment of the other bridge.
Otherwise they overlap. Two bridges B; B0 are skew if there are four distinct
vertices u; v; u0; v0 of C such that u; v and u0; v0 are vertices of attachment of B
and B0 respectively and the vertices appear in a cyclic order u; u0; v; v0:

Again, see Figure 9.9 in BM, which shows some bridges which are skew and
some which are not.

Theorem 30 If two bridges overlap, then either they are skew or else they are
equivalent 3-bridges.

Proof. Suppose we have 2 bridges B;B0 which overlap (and hence each have
at least 2 vertices of attachment). Certainly, if either is a 2-bridge, then they
must be skew (check it directly). Now assume that both have at least 3 vertices
of attachment. If B and B0 are equivalent and have more than 3 vertices of
attachment, then they must be skew, so if they are equivalent, it must be a
3-bridge or skew. If they are not equivalent, then B0 has a vertex of attachment
u0 between two consecutive vertices of attachment u and v of B: Since B and
B0 overlap, there must be a vertex of attachment v0 of B0 which does not lie in
the segment of B containing u0:

Theorem 31 If a bridge B has three vertices of attachment v1; v2; v3; then
there exists a vertex v0 in B which is not in C and three internally disjoint
paths P1; P2; P3 from v0 to v1; v2; v3 respectively.

Proof. Let P be a v1v2-path in B which is internally disjoint from C: P must
have an interior vertex v, otherwise the bridge is just P and would not contain
v3: Let Q be a v3v-path in B; internally disjoint from C; and let v0 be the �rst
vertex of Q on P: We then de�ne P1; P2; P3 appropriately.
We are primarily considering with bridges in plane graphs. If G is a plane

graph and C is a cycle in G; then C is a Jordan curve and hence divides the
plane into an interior region and an exterior region. Since a bridge is connected,
it must lie entirely in one of these two regions.

De�nition 32 An inner bridge is one contained in the interior region. An
outer bridge is one contained in the exterior region.
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Note the following.

Theorem 33 Inner bridges avoid one another, as do outer bridges.

Proof. Let B;B0 be two inner bridges which overlap. Then by Theorem 30,
they must be equivalent 3-bridges or skew. Suppose they are skew. Then there
are vertices u; v 2 V (B) and u0; v0 2 V (B0) such that u; u0; v; v0 appear in cyclic
order around the cycle C. Let P be a uv-path in B which is internally disjoint
from C and let P 0 be a u0v0-path in B0 internally disjoint from C: Since B and
B0 are di¤erent bridges, P and P 0 cannot have an interior vertex in common.
But they also must both be part of the interior of C since they are both inner
bridges. This is impossible by the Jordan curve theorem, considering the region
de�ned by part of C and P , which must be a Jordan curve, and the path P 0

which must go from the inside of the region to the outside of the region.
Now suppose B and B0 are equivalent 3-bridges. Let the common vertex

set be fv1; v2; v3g : By Theorem 31 there is a vertex v0 in B and three paths
P1; P2; P3 in B as in the statement of the theorem. Similarly there is v0 and
P 01; P

0
2; P

0
3 in B

0: P1; P2; P3 divide the interior region of C into three regions, and
v00 must be in one of those regions. But there must also be a path P

0
i which

goes to a vertex vi not in the region. This is impossible by the Jordan curve
theorem.
The argument for outer bridges is similar.
The key fact is that certain bridges can be moved from the interior region

of C to the exterior region of C:

De�nition 34 Let G be a plane graph. An inner bridge B of a cycle C in G is
transferable if ithere exists a plane graph ~G isomorphic (as graphs) to G which
is identiacal to G except that B is not an outer bridge of C in ~G: We say ~G is
obtained from G by transferring B:

Theorem 35 An inner bridge that avoids every outer bridge is transferrable.

Proof. Let G be an inner bridge that avoids every outer bridge. Then the
vertices of attachment all lie on the boundary of ONE region of G contained in
the exterior region of C (since every outer bridge is within a single segment of
C formed by B: Thus B can then be redrawn in that region by switching the
vertices in the interior to the exterior.

3.2 Proof

Recall that a cut vertex is a vertex v such that G� v is disconnected. We can
de�ne a more general k-vertex cut.

De�nition 36 A k-vertex cut is a set of k vertices fv1; v2; : : : ; vkg such that
G�fv1; v2; : : : ; vkg is disconnected. A graph is said to be k-connected if there are
no `-vertex cuts for ` < k (i.e., all vertex cuts must contain at least k vertices).
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For example, any connected graph is 1-connected. A cycle is 2-connected.
Now consider a graph G with a 2-vertex cut fu; vg : Then there exist sub-

graphs G1; G2 such that G = G1[G2 and V (G1)\V (G2) = fu; vg : Suppose we
join u and v by a new edge e to obtain graphs H1 and H2: Then G = H1[H2�e:

Lemma 37 If G is nonplanar, then at least one of H1 and H2 is nonplanar.

Proof. Suppose both were planar. Then there are plane graphs representing
each, and one region R of the plane graph for H1 has e as a boundary edge.
The same is true for H2; but one can make it so that e is on the exterior region.
Then we can embed H1[H2 by putting H2 into the region R: Removing e would
give a planar embedding for G:

Lemma 38 Let G be a nonplanar connected graph that contains no subdivision
of K5 or K3;3 and has as few edges as possible. Then G is 3-connected and does
not have multiple edges between the same vertices.

Proof. Clearly it cannot have multiple edges, since if so, we could remove
them. If G is not 3-connected, then there is a a 2-vertex cut fu; vg : Since
G is nonplanar, we can construct H1;H2 as above, and at least one must be
nonplanar, say H1: We know that the order of H1 is strictly less than the order
of G; so it must contain a subgraph isomorphic to a subdivision of K5 or K3;3:
Since K is not a subgraph of G; it must contain the edge e: Let P be a uv-path
in H2 � e: Then G contains a subgraph K [ P � e; which is a subdivision of K
and hence a subdivision of K5 or K3;3; a contradition.
We are now ready for the proof. Let�s start with a minimal nonplanar graph,

i.e., one such that if we remove any edges it becomes planar. If we can �nd a
subgraph isomorphic to a subdivision of K3;3 or K5 in this, then we can �nd
one in any nonplanar graph. We �rst construct a canonical piece using bridges.

Claim 39 There is an edge uv 2 E (G) ; such that G� uv has a planar embed-
ding with a cycle C containing u and v such that

1. C contains the maximal number of interior edges as possible,

2. there is an outer bridge of C consisting of one edge xy which is skew to
uv; and

3. there is an inner bridge B of C which is skew to both uv and xy:

Before we prove the claim, let�s see how this implies the theorem. We divide
into two cases: whether all vertices of attachment of B are among fx; y; u; vg ;
or if there is a vertex attachment which is not in that set.
Suppose all vertices of attachment of B are among fx; y; u; vg : Since B is

skew to both xy and uv; B must have all four vertices of attachment. There
must be a uv-path P and a xy-path Q in G � uv which are internally disjoint
from C and which intersect each other (exercise). First suppose they intersect
in exactly one vertex. Then the graph consisting of uv; xy; P; Q; C form a
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subdivision of K5 (See BM Figure 9.21). If they intersect in more than one
vertex, let u0 be the intersecting vertex closest to u on P and v0 the intersecting
vertex closest to v on P: This induces subpaths P1 between u and u0 and P2
between v0 and v: If we let Q1 be the path between u0 and v0 in Q; we can
construct a subdivision of K3;3 using uv; xy;Q; P1; P2; and the segments (x; v)
and(y; u) : See BM Figure 9.22.
Now suppose there is an additional vertex of attachment ofB; v1 =2 fu; v; x; yg :

We may suppose v is in the segment (x; u) : First suppose that B has another
vertex of attachment v2 in the segment (y; v) : Then there must be a v1v2-path
in B; and one has a subdivision of K3;3 made from uv; xy; P; and C: (See BM
Figure 9.19). Now suppose B has no vertex of attachment in the segment (y; v) :
Since B is skew to xy and uv; B must have vertices of attachment v2 in the
segment (u; y] (possibly including y) and v3 in the segment (x; v] (possibly in-
cluding v). By Theorem 31, there must be a vertex and three internally disjoint
paths P1; P2; P3 which go to the three vertices of attachment. We then can see
the subdivision of K3;3 induced by xy; uv; P1; P2; P3 and all the segment sof C
except segement (v; y) : See BM Figure 9.20.
Proof of Claim 39. If G is nonplanar but does not contain a subdivision of K5

or K3;3; then G is 3-connected by Lemma 38. Thus G�uv is 2-connected.Thus
any two vertices lie on a cycle (if not, one could disconnect the two by removing
a single edge, and the graph would not be 2-connected). Hence there is a cycle
containing u and v in G � uv: Now take the cycle C containing the maximum
number of interior edges.
Since G� uv is 2-connected (and without multiple edges), each bridge must

have at least 2 vertices of attachment. Now consider an outer bridge. If it is
a k-bridge with k > 2; then one could make the cycle contain more edges in
the interior, contradicting the fact that the cycle contains the maximal number
of edges in the interior. Thus all outer bridges are 2-bridges. Furthermore, it
can contain only one edge, since if there is another vertex in the bridge, then
the two vertices of attachment form a cut set with 2 vertices, contradicting the
fact that G is 3-connected.. Furthermore, the bridge must overlap uv; otherwise
there is a cycle which contains more edges in the interior.
Finally, inner bridges avoid one another. Thus if
If no inner bridge skew to uv is skew to an outer bridge, then one inner

bridge is transferable. But since all inner bridges avoid one another, every inner
bridge skew to uv can be transferred. Thus there is an embedding of G; a
contradiction. Thus there must be an inner bridge skew to uv and skew to an
outer bridge.
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