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1 Representing graphs as matrices

It will sometimes be useful to represent graphs as matrices. This section is taken
from C-10.1.
Let G be a graph of order p: We denote the vertices by v1; : : : ; vp: We can

then �nd an adjacency matrix A = A (G) = [aij ] de�ned to be the p � p
matrix such that aij = 1 if vivj 2 E (G) : This matrix will be symmetric for an
undirected graph. We can easily consider the generalization to directed graphs
and multigraphs.
Note that two isomorphic graphs may have di¤erent adjacency matrices.

However, they are related by permutation matrices.

De�nition 1 A permutation matrix is a matrix gotten from the identity by
permuting the columns (i.e., switching some of the columns).

Proposition 2 The graphs G and G0 are isomorphic if and only if their adja-
cency matrices are related by

A = PTA0P

for some permutation matrix P .

Proof (sketch). Given isomorphic graphs, the isomorphism gives a permu-
tation of the vertices, which leads to a permutation matrix. Similarly, the
permutation matrix gives an isomorphism.
Now we see that the adjacency matrix can be used to count uv-walks.

Theorem 3 Let A be the adjacency matrix of a graph G, where V (G) =
fv1; v2; : : : ; vpg : Then the (i; j) entry of An; where n � 1; is the number of
di¤erent vivj-walks of length n in G:

Proof. We induct on n: Certainly this is true for n = 1: Now suppose An =�
a
(n)
ij

�
gives the number of vivj-walks of length n: We can consider the entries
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of An+1 = AnA: We have

a
(n+1)
ij =

pX
k=1

a
(n)
ik akj :

This is the sum of all walks of length n between vi and vk followed by a walk
from vk to vj of length 1: All walks of length n + 1 are generated in this way,
and so the theorem is proven.

2 PageRank problem and idea of solution

We will generally follow the paper by Bryan and Leise, denoted BL.
Search engines generally do three things:

1. Locate all webpages on the web.

2. Index the data so that it can be searched e¢ ciently for relevent words.

3. Rate the importance of each page so that the most important pages can
be shown to the user �rst.

We will discuss this third step.
We will assign a nonnegative score to each webpage such that more important

pages have higher scores. The �rst idea is:

� Derive the score for a page by the number of links to that page from other
pages (called the �backlinks�for the page).

In this sense, other pages vote for the page. The linking of pages produces
a digraph. Denote the vertices by vk and the score of vertex vk by xk:
Approach 1: Let xk equal the number of backlinks for page vk: See example

in BL Figure 1. We see that x1 = 2; x2 = 1; x3 = 3; and x4 = 2: Here are two
problems with this ranking:
Problem 1: Links from more important pages should increase the score more.

For instance, the scores of v1 and v4 are the same, but v1 has a link from x3;
which is a more important page, so maybe it should be ranked higher. We will
deal with this by, instead of letting xi equal the total number of links to it, we
will have it be equal to the sum of the scores of the pages linking to it, so more
important pages count more. Thus we get the relations

x1 = x3 + x4

x2 = x1

x3 = x1 + x2 + x4

x4 = x1 + x2:

This doesn�t quite work as stated, since to solve this linear system, we see that
we get x1 = x2 = 1

2x4 =
1
4x3; which means that if we look at the �rst equality,
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we must have that they are all equal to zero. However, a slightmodi�cation in
regard to the next problem will �x this.
Problem 2: One site should not be able to signi�cantly a¤ect the rankings

by creating lots of links. Of course, creating links should a¤ect the rankings,
but by creating thousands of links from one site, one should not be able to boost
the importance too much. So instead of giving one vote for each link out, we
will give equal votes to each outlink from a particular page, but the total votes
is equal to one. This changes the above system to

x1 = x3 +
1

2
x4

x2 =
1

3
x1

x3 =
1

3
x1 +

1

2
x2 +

1

2
x4

x4 =
1

3
x1 +

1

2
x2:

This can be solved as follows.

x2 =
1

3
x1

x4 =
1

3
x1 +

1

2
x2 =

1

2
x1

x3 =
1

3
x1 +

1

2
x2 +

1

2
x4 =

1

3
x1 +

1

6
x1 +

1

4
x1 =

3

4
x1:

Thus we can have a score of x1 = 1; x2 =
1
3 ; x3 =

3
4 ; x4 =

1
2 : Notice that x1

has the highest ranking! This is because x3 threw its whole vote to x1 and so
that even though x3 got votes from three di¤erent sites, they still do not total
as much as what x1 gets. Note, usually we will rescale so that the sum is equal
to 1; and so we get

x1 =
12

31
; x2 =

4

31
; x3 =

9

31
; x4 =

6

31
:

3 General formulation

We can state this in a more general way. We want to assign scores so that

xi =
X
j2Li

xj
nj

where Li are the indices such that vj links to vi if j 2 Li; and nj is equal to
outdegree of vj : Note that Li contains ideg (vi) elements. The set Li is called
the set of backlinks of vertex vi: This can be rewritten as a vector equation

x = Ax;
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where A is the matrix A = (aij) given by

aij =

� 1
nj

if j 2 Li
0 otherwise

:

This matrix is called the link matrix. We note that in the example, the matrix
A was

A =

2664
0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0

3775 :
The problem of solving for the scores x then amounts to �nding an eigenvector
with eigenvalue 1 for the matrix A:
We can consider the link matrix as giving the probabilities of traversing a

link from the page represented by the column to the page representing the row.
Thus it makes sense that the sum of the values of the columns are equal to one.

De�nition 4 A matrix is called a column stochastic matrix if all of its entries
are positive and the sum of the elements in each column are equal to 1:

Now the question is whether we can �nd an eigenvector for a column sto-
chastic matrix, and the answer is yes.

Proposition 5 If A is a column stochastic matrix, then 1 is an eigenvalue.

Proof. Let e be the column vector of all ones. Since A is column stochastic,
we clearly have that

eTA = eT :

Thus
AT e = e

and e is an eigenvector with eigenvalue 1 for AT : However, A and AT have the
same eigenvalues (not eigenvectors, though), so A must have an eigenvalue 1,
too.

Remark 6 Do you remember why A and AT have the same eigenvalues? The
eigenvalues of A are the solutions � of det (A� �I) = det

�
AT � �I

�
:

4 Challenges to the algorithm

There are two issues we will have to deal with.
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4.1 Nonuniqueness

We would like our ranking to be unique, which means that we should have only
one eigenvector representing the eigenvalue 1. It turns out that this is true if
the web is a strongly connected digraph. We will show this later. However, if
the web is disconnected, then we can have a higher dimensional eigenspace for
eigenvalue 1: Consider the web in BL Figure 2.2. The link matrix is

A =

266664
0 1 0 0 0
1 0 0 0 0
0 0 0 1 1

2
0 0 1 0 1

2
0 0 0 0 0

377775 :

It is easy to see that the vectors
�
1
2 ;

1
2 ; 0; 0; 0

�T
and

�
0; 0; 12 ;

1
2 ; 0
�T
have eigenvalue

1: However, we also have that any linear combination of these have eigenvalue
1; and so we have vectors like

�
3
8 ;

3
8 ;

1
8 ;

1
8 ; 0
�T
as well as

�
1
8 ;

1
8 ;

3
8 ;

3
8 ; 0
�T
; which

give di¤erent rankings!

Proposition 7 Let W be a web with r components W1;W2; : : : ;Wr: Then the
eigenspace of the eigenvalue 1 is at least r-dimensional.

Proof (Sketch). A careful consideration shows that if we label the web by
assigning the vertices in W1 �rst, then the vertices in W2; etc., then the link
matrix will have a block diagonal form like

A =

26664
A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 Ar

37775 ;
where Ak is the link matrix for the webWk: If each is column stochastic, each has
an eigenvector vk with eigenvalue 1, and that can be expanded into a eigenvector
wk for A by letting

w1 =

0BBBBB@
v1
0
0
...
0

1CCCCCA ; w2 =

0BBBBB@
0
v2
0
...
0

1CCCCCA ;

etc. Each of these is linearly independent and part of the eigenspace V1 of
eigenvalue 1.
We will �gure out a way to deal with this soon.
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4.2 Dangling nodes

De�nition 8 A dangling node is a vertex in the web with outdegree zero (i.e.,
with no links).

The problem with a dangling node is that it produces a column of zeroes.
This means that the resulting link matrix is not column-stochastic, since some
columns may sum to zero. This means that we may not use our theorem that
1 is an eigenvalue. In fact, it may not be true. We will sketch how to deal with
this later.

5 Solving the problems

5.1 Dealing with multiple eigenspaces

Recall that we seemed to be okay if we had a strongly connected graph (web).
We will now take our webs that are not strongly connected and make them
strongly connected by adding a little bit of an edge between any two vertices.
From a probabilistic perspective, we are adding on a possibility of randomly
jumping to any page on the entire web. We will make this probability small
compared with the probability to navigate from a page.
Let S be the matrix n � n matrix with all entries 1=n: Notice that this

matrix is column stochastic. In terms of probabilities, this matrix represents
equal probabilities of jumping to any page on the web (including the one you
are already on). Also notice that if A is a column stochastic matrix, then

M = (1�m)A+mS

is column stochastic for all values of m between zero and one. Supposedly the
original value for m used by Google was 0:15: We will show that the matrix M
has a one-dimensional eigenspace V1 (M) for the eigenvalue 1 as long as m > 0:
Note that the matrix M has all positive entries. This motivates:

De�nition 9 A matrix M = (Mij) is positive if Mij > 0 for every i and j:

For future use, we de�ne the following.

De�nition 10 Given a matrix M; we write V� (M) for the eigenspace of eigen-
value �:

We will show that a positive column-stochastic matrix has a one dimensional
eigenspace V1 for eigenvalue 1:

Proposition 11 If M is a positive, column-stochastic matrix, then V1 (M) has
dimension 1:
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Proof. Suppose v and w are in V1 (M) : Then we know that sv + tw 2 V1 (M)
for any real numbers s and t: We will now show that (1) any eigenvector in
V1 (M) has all positive or all negative components and that (2) if x and y are
any two linearly independent vectors, then there is some s and some t such that
sx + ty has both positive and negative components. This would imply that
sv + tw has all positive or all negative components, and thus v and w must be
linearly dependent.
Before we prove those propositions, let�s de�ne the one-norm of a vector.

De�nition 12 The one-norm of a vector v = (vi) 2 Rn is equal to

kvk1 =
nX
i=1

jvij ;

where jvij is the absolute value of the ith component of v:

Proposition 13 Any eigenvector in V1 (M) has all positive or all negative com-
ponents.

Proof. Suppose Mv = v: Since M is column-stochastic, we know that

nX
i=1

Mij = 1

for each j; and since M is positive, we know that

jMij j =Mij

for each i and j: Therefore, we see that

kvk1 = kMvk1

=
nX
i=1

������
nX
j=1

Mijvj

������
�

nX
i=1

nX
j=1

jMij j jvj j

=

nX
j=1

nX
i=1

Mij jvj j

=

nX
j=1

jvj j = kvk1 :

That means that the inequality must be an equality, meaning that������
nX
j=1

Mijvj

������ =
nX
j=1

jMij j jvj j :
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This is only true if Mijvj � 0 for each i and j (or Mijvj � 0 for each i and j).
However, since Mij > 0; this implies that vj � 0 for each j (or vj � 0 for each
j). Furthermore, since

vi =
nX
j=1

Mijvj

with vj � 0 (vj � 0)and Mij > 0; we must have that either all v are zero or all
are positive (negative). Since v is an eigenvector, it is not the zero vector.

Remark 14 A similar argument shows that for any positive, column-stochastic
matrix, all eigenvalues � satisfy j�j � 1:

Proposition 15 For any linearly independent vectors x and y 2 Rn; there are
real values of s and t such that sx+ty has both negative and positive components.

Proof. Certainly this is true if either x or y have both postive and negative
components, so we may assume both have only positive components (the other
cases of both negative or one positive and one negative are handled by adjusting
the signs of s and t appropriately). We may now consider the vector

x =

 
nX
i=1

wi

!
v �

 
nX
i=1

vi

!
w:

Both the sums in the above expression are nonzero by assumption (in fact,
positive). Also x is nonzero since v and w are linearly independent. Notice that

nX
i=1

xi = 0:

Since x is not the zero vector, this implies that x must have both positive and
negative components.
Thus, the matrix M can be used to produce unique rankings if there no

dangling nodes.

5.2 Dealing with Dangling nodes

For dangling nodes, we have the following theorem of Perron:

Theorem 16 If A is a matrix with all positive entries, then A contains a real,
positive eigenvalue � such that

1. For any other eigenvalue �; we have j�j < � (recall that � could be com-
plex).

2. The eigenspace of � is one-dimensional and there is a unique eigenvector
x = [x1; x2; : : : ; xp]

T with eigenvalue � such that xi > 0 for all i and

pX
i=1

xi = 1:
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This eigenvector is called the Perron vector. Thus, if we had a matrix with
all postive entries, as we got in the last section, we can use the Perron vector
as the ranking.

6 Computing the ranking

The basic idea is that we can try to compute an eigenvector iteratively like

xk+1 =Mxk =M
kx0:

Certainly, if Mx0 = x0; then this procedure �xes x0: In general, if we replace
this method with

xk+1 =
Mxk
kMxkk

for any vector norm, we will generally �nd an eigenvector for the largest eigen-
value.

Proposition 17 Let M be a positive column-stochastic n�n matrix and let V
denote the subspace of Rn consisting of vectors v such that

nX
i=1

vi = 0:

Then for any v 2 V we have Mv 2 V and

kMvk1 � c kvk1 ;

where c < 1:

Corollary 18 In the situation in the proposition,

Mkv



1
� ck kvk1 :

Proof. This is a simple induction on k; using the fact that Mv 2 V and

Mkv



1
� c



Mk�1v



1
:

This is essentially showing that the iteration is a contraction mapping, and
that will allow us to show that the method works.

Proposition 19 Every positive column-stochastic matrix M has a unique vec-
tor q with positive components such that Mq = q and kqk1 = 1: The vector can
be computed as

q = lim
k!1

Mkx0

for any initial guess x0 with positive componets such that kx0k1 = 1:
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Proof. We already know that M has 1 as an eigenvalue and that the subspace
V1 (M) is one-dimensional. All eigenvectors have all positive or all negative
components, so we can choose a unique representative q with positive compo-
nents and norm 1 by rescaling. Now let x0 be any vector in Rn with positive
components and kx0k = 1: We can write

x0 = q + v

for some vector v: We note that if we sum the components of x0 or the compo-
nents of q; we get one since both have positive components and 1-norm equal
to one. Thus v 2 V as in the previous proposition. Now we see that

Mkx0 =M
kq +Mkv

= q +Mkv:

Thus 

Mkx0 � q



1
=


Mkv




1
� ck kvk1 :

Since c < 1; we get that


Mkx0 � q




1
! 0 as k !1:

We now go back and prove Proposition 17.
Proof of Proposition 17. It is pretty clear that Mv 2 V sinceX

(Mv)j =
X
j

X
i

Mjivi

=
X
i

X
j

Mjivi

=
X
i

vi = 0

since M is column-stochastic. Now we consider

kMvk1 =
X
j

�����X
i

Mjivi

�����
=
X
j

ej
X
i

Mjivi

=
X
i

aivi

where

ej = sgn

 X
i

Mjivi

!
and

ai =
X
j

ejMji:
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Note that if jaij � c for all i; then

kMvk1 � c kvk1 :

We can see that

jaij =

������
X
j

ejMji

������
=

������
X
j

Mji +
X
j

(ej � 1)Mji

������
=

������1 +
X
j

(ej � 1)Mji

������ :
Each term in the sum is nonpositive, and since Mji are positive and ej are not
all the same sign, the largest this can be is if most ej are 1 except for a single
ej which is negative and corresponds to the smallest Mji: Thus we see that

jaij � 1� 2min
j
Mji � 1� 2min

i;j
Mji < 1:
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