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1 Introduction

We will begin by considering several problems which may be solved using graphs,
directed graphs (digraphs), and networks.
Problem 1: The Königsberg Bridge Problem. The city of Königsberg has

a river with two islands and seven bridges. The question is whether one can
traverse each bridge exactly once. This is a classical problem solved by Euler in
the 1700s
Problem 2: Coloring maps. Given a map of a continent, how many colors

does one need to color each country so that it has a di¤erent color than each of
its neighbors? It turns out the answer is 4, but the proof is extremely di¢ cult.
We will prove that 5 is su¢ cient, which is a weaker result.
Problem 3: Ranking pages on the internet. The internet is a (directed)

graph. How can one rank the importance of all pages on the internet? One an-
swer is the PageRank algorithm, used by google for returning results of internet
searches.
These are just some of the problems we will investigate in the course of the

semester. The formalism of graphs, directed graphs, and networks will serve as
a way to model many di¤erent situations, and then we will develop techniques
devoted to these abstract models. This is very much like when you learn to solve
problem using algebra or calculus by converting the problems into equations,
and then learning to solve the equations.

2 This course

See the syllabus for information about this course.

3 What is a graph, digraph, and a network

De�nition 1 (Chartrand) A graph G is a �nite, nonempty set V together
with a relation R on V which is:

1. irre�exive, i.e., (v; v) =2 R for any v 2 V; and
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2. symmetric, i.e., (v; w) 2 R if and only if (w; v) 2 R:

Note: a relation R on a set V is a subset of V �V (ordered pairs of elements
in V ).

De�nition 2 (Bondy and Murty) A graph G is a triple (V (G) ; E (G) ;  G)
where V (G) and E (G) are disjoint sets and

 G : E (G)! Sym (V (G) ; V (G))

is a map from E (G) to unordered pairs of vertices. The map  G is called the
incidence map.

Often we will consider G = (V;E) ; where in this case, we identify E and
 G (E) :

De�nition 3 In these two de�nitions, elements of V are called vertices and
elements of E are called edges.

Why are these de�nitions the same? Given the second de�nition, we simply
let V = V (G) and

R =
[

e2E(G)

[ G (e)]1 [ [ G (e)]2 ;

where [ G (e)]1 and [ G (e)]2 are the two ways to order the unordered pairs.
Given the �rst de�nition, we simply let E (G) be the unordered pairs corre-
sponding to elements of R; and let  G be, essentially, the identity.
BUT: there is a di¤erence. Bondy and Murty allow for multiple edges be-

tween the same vertices and for edges which start and end at the same vertex!
This is an example of how the de�nition of a graph is not entirely consistent
from one place to the next and one must be careful.
Some graph terminology:

De�nition 4 The order of a graph is the number of vertices, i.e., jV j = jV (G)j :

De�nition 5 The size of a graph is the number of edges, i.e., jEj = jE (G)j

We will usually denote edges as uv; with the understanding that uv = vu:
In the Chartrand de�nition, this means that both (u; v) and (v; u) are in R:
Note, it is possible for the size to be zero, but not the order!
We often denote a graph by a diagram, and will often refer to the diagram

as the graph itself. Notice that two di¤erent diagrams may correspond to the
same graph!!
In general, I prefer the description in BM, but will often assume the graph

is entirely given by the vertices and edges, unless we are interested graphs with
multiple edges between the vertices, in which case we will need the whole de�ni-
tion. We will also generally assume that graphs do not have loops (edges which
begin and end at the same vertex).
Some more terminology:
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De�nition 6 Suppose u; v; w 2 V and uv = e 2 E and uw =2 E: Then:

� We say e joins u and v:

� We say u and v are adjacent vertices and u and w are nonadjacent ver-
tices.

� We say that u and v are incident with (or to or on) e:

� If uv0 = e0 2 E and v 6= v0; then we say that e and e0 are adjacent edges.

For completeness now, we de�ne digraphs and networks.

De�nition 7 A directed graph, or digraph, is a vertex set together with an
irre�exive relation. This is the same as saying that edges are ordered pairs
instead of unordered pairs.

Note, if a digraph is symmetric, it can be represented as a graph.

De�nition 8 A network is a graph G together with a map � : E ! R. The
function � may represent the length of an edge, or conductivity, or cross-sectional
area or many other things.

4 Isomorphism of graphs

4.1 Equivalence relations

Studying all possible graphs is a daunting task, since it would require us to con-
sider all �nite sets! A usual technique in mathematics is to partition large sets
like this using an equivalence relation. See A.3 in Chartrand for this material.

De�nition 9 An equivalence relation R on a set S is a subset of S � S satis-
fying:

1. re�exivity: (x; x) 2 R for every x 2 S;

2. symmetry: (x; y) 2 R if and only if (y; x) 2 R; and

3. transitivity: if (x; y) 2 R and (y; z) 2 R then (x; z) 2 R:

Note that sometimes denote (x; y) 2 R by x R y or x � y:0

Example 10 The relation < on the set R is not an equivalence relation because
it is neither re�exive or symmetric (it is transitive!)

Example 11 The relation � on the set R is not an equivalence relation because
it is not symmetric (it is re�exive and transitive).

Example 12 The relation = on the set R is an equivalence relation.
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Example 13 The relation �is equal modulo 2� on the set Z of integers is an
equivalence relation.

Example 14 The relation de�ning a graph is not an equivalence relation since
it is not re�exive and may not be transitive.

Example 15 The relation �is parallel to�on the set of lines in the plane is an
equivalence relation.

The importance of equivalence relations is that they partition the set S into
pieces.

De�nition 16 The equivalence class of x; usually written as [x] or [x]R ; is
de�ned as

[x] = fy 2 S : (x; y) 2 Rg :

Note that [x] = [y] if and only if (x; y) 2 R; i.e., x is equivalent to y: The
importance of equivalence relations is that they form a partition.

De�nition 17 Let S be a set and let A1; A2; : : : ; An be nonempty, disjoint sub-
sets of S: The set P = fA1; : : : ; Ang is a partition if S = A1 [ � � � [An:

Example 18 The set fE;Og where E are even integers and O are odd integers
is a partition of the integers Z.

Example 19 Consider S = f1; 2; 3g : The following are partitions of S: P1 =
ff1g ; f2g ; f3gg ; P2 = ff1; 3g ; f2gg ; P3 = ff1; 2; 3gg : The following sets are
not partitions: Q1 = ff1g ; f2gg ; Q2 = ff1; 2g ; f2; 3gg ; Q3 = ff1g ; f1; 2; 3gg :

Proposition 20 For any equivalence relation R on a set S; the set of equiva-
lence classes

P = f[x] : x 2 Sg

form a partition.

Note that we mean P contains one copy of the equivalence class [x] ; not one
for each x 2 S:
Proof. We need to show that the equivalence classes are nonempty, disjoint
and that their union is all of S: The latter is clearly true, since

S =
[
x2S

[x] :

By re�exivity, we know that x 2 [x] ; so equivalent classes are nonempty. In
order to show they are disjoint, we see that if y 2 [x]\ [x0] ; then (x; y) 2 R and
(y; x0) 2 R; so by transitivity, (x; x0) 2 R and hence [x] = [x0] : Thus, for any
two elements, their equivalence classes are either the same or disjoint.
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4.2 Isomorphism

We are now ready to consider a particular equivalence relation on graphs, iso-
morphism. We would like it to encapsulate when two graphs which are techni-
cally di¤erent should have all of the same �graph theoretic�properties.

De�nition 21 The graphs G = (V;E) and G0 = (V 0; E0) are isomorphic if
there is a bijection

� : V ! V 0

such that
(v; w) 2 E if and only if (� (v) ; � (w)) 2 E0:

The map � is called an isomorphism.

Remark 22 A map � : A ! B is a bijection if there exists another map
��1 : B ! A such that ��1 � � : A! A is the identity and � � ��1 : B ! B is
the identity. It is well-known that � is a bijection if and only if it is

1. one-to-one (or injective): if � (x) = � (y) then x = y; and

2. onto (or surjective): � (A) = B:

For more information, see Chartrand A.4.

Remark 23 In the BM de�nition, one may have multiple edges with the same
vertices, so the above de�nition is not su¢ cient. Instead, we need to have two
bijections, �V : V ! V 0 and �E : E ! E0; such that

 G0 (�E (e)) = �V (u) �V (v) if and only if  G (e) = uv:

Show examples.

Proposition 24 The relation �is isomorphic to� is an equivalence relation.

Proof. We need to show the following:

1. Re�exive: yes, G is isomorphic to G taking the identity map as �:

2. Symmetric: yes, if � is an isomorphism from G to G0, it is a bijection and
hence has an inverse, and thus ��1 is an isomorphism from G0 to G:

3. Transitive: yes, if � is an isomorphism from G to G0 and �0 is an isomor-
phism from G0 to G00: Then we claim that �00 = �0 � � is an isomorphism
from G to G00: Certainly, it is a bijection, since it has inverse (�00)�1 =
��1 �(�0)�1 : Also, we see that (v; w) 2 E if and only if (� (v) ; � (w)) 2 E0
if and only if (�0 � � (v) ; �0 � � (w)) = (�00 (v) ; �00 (w)) 2 E00:

In order to show two graphs are isomorphic, one must �nd an isomorphism.
How do we show two graphs are not isomorphic?
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4.3 Easy invariants of graphs

We are looking for properties which are preserved by isomorphism. That way,
if we �nd two graphs with di¤erent such properties, they cannot be isomorphic,
otherwise the isomorphism would imply that they have the same property!
The �rst such property is the degree.

De�nition 25 The degree of a vertex v; denoted degG v or deg v; is the number
of edges incident with v:

Examples of graphs with vertices of di¤erent degrees.

Proposition 26 If � : G ! G0 is an isomorphism, then degG v = degG0 � (v)
for each v 2 V (G) :

Note this implies that the set of vertex degrees for each graph must be the
same.
Proof. Since � is an isomorphism, we see that for each edge (v; w) 2 E (G) ;
where v is the given vertex and w varies, there is an edge (� (v) ; � (w)) 2 E (G0) ;
and thus

degG v � degG0 � (v) :

Using the isomorphism ��1; we see that

degG0 v0 � degG ��1 (v0)

for any v0 2 V (G0) : Taking v0 = � (v) (which we can do since � is a bijection!)
we see that

degG0 � (v) � degG v:
Thus, we must have that

degG0 � (v) = degG v:

Show examples of non-isomorphic graphs using degree.
Show example of nonisometric graphs with the same degree (see C, Fig. 2.5).

De�nition 27 A (p; q)-graph is a graph with order p and size q:

Theorem 28 If G is a (p; q)-graph and V (G) = fv1; : : : ; vpg ; then
pX
i=1

degG (vi) = 2q:

Proof. In the left sum, for each vertex we count the edges incident on it. Since
each edge is incident on two vertices and each vertex is counted, we get the
result.
Note that this is quite a restriction on the degrees of vertices, i.e., we cannot

just assign degree numbers arbitrarily and hope that there is a graph with that
collection of degrees.

6



De�nition 29 We say a vertex is even or odd depending on whether its degree
is even or odd.

Theorem 30 Every graph has an even number of odd vertices.

Proof. If there are no odd vertices, then there are an even number of odd
vertices. Suppose V (G) = fv1; : : : ; vpg ; and suppose the vertices fv1; : : : ; vng
are odd and fvn+1; : : : ; vpg are even (there may be none). We look at the
theorem, and see that

nX
i=1

degG vi +

pX
j=n+1

degG vj = 2q:

Recall that the sum of an even number of odd numbers is even and the sum of
an odd number of odd numbers is odd. any sum of even numbers is even. Thus
we get that

nX
i=1

degG vi = 2q �
pX

j=n+1

degG vj

has an even number on the right and an odd number on the left if n is odd.
Thus n must be even.

Remark 31 How does one prove that the sum of an odd number of odd numbers
is odd? One must use induction and we will do it in the homework.

De�nition 32 If every vertex has degree r; we say that the graph is r-regular. A
graph is complete if every edge is connected to every other edge, or, equivalently,
it is (p� 1)-regular where p is the order.

Draw some complete graphs.

4.4 Enumeration of graphs by order and size

We may try to enumerate the isomorphism classes of graphs by their order and
size. Since degree is an invariant, we see that there is only one graph of order 1 (a
single vertex), which has size zero. This means that given two graphs G1 and G2
of size 1, they must be isomorphic. There is one graph with (order,size)=(2; 0)
and one graph with (2; 1) : There are three (4; 3) graphs.
One can use the pigeonhole principle to see that given any 4 graphs of type

(4; 3) ; two must be isomorphic. The pigeonhole principle can be stated as
follows. In the sequel, dxe is the smallest integer greater than x; also called the
ceiling of x:

Proposition 33 (Pigeonhole Principle) If fS1; S2; � � � ; Skg is a partition of
the set S containing n elements, then there must be at least one i such that Si
contains dn=ke elements.
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Proof. Suppose each Si contain fewer than dn=ke elements. First suppose n=k
is an integer. Then the total number of elements in

k[
i=1

Si

is less than k dn=ke = n: Hence the union is a strict subset of S; and thus the
set is not a partition. If n=k is not an integer, then each set contains at most
dn=ke � 1 = (n�m) =k elements, where 1 � m < k: Thus the total number of
elements is less than or equal to (n�m) ; and thus the same argument applies.

Using the Pigeonhole Principle, we see that since there are 3 graphs of type
(4; 3) up to isomorphism, which means that we have a partition of the set with
k = 3; then if we have a set of 4 graphs, at least one element of the partition
(isomorphism class) must contain d4=3e = 2 elements.

5 Connected graphs

An important type of graph is a connected graph. In this section we will show
the following:

Theorem 34 Let G be a connected graph. Any edge e 2 E (G) is a bridge of
G if and only if it is not contained in any cycle.

De�nition 35 A subgraph H of a graph G is a graph such that V (H) � V (G)
and E (H) � E (G) :

Remark 36 Note that we require that H be a graph, so this places restrictions
on V (H) and E (H), i.e., you cannot just take arbitrary subsets of V (G) and
E (G) :

De�nition 37 The following are ways to traverse a graph:

1. A uv-walk is an alternating sequence of vertices and edges starting at u
and ending at v such that adjacent elements of the sequence are incident.
E.g., u; uw1; w1; w1w2; w2; w2v; v:

2. A uv-trail is a uv-walk which does not repeat any edge. It may repeat a
vertex, though.

3. A uv-path is a uv-trail which does not repeat any vertex.

De�nition 38 Two vertices u and v are connected if u = v or there exists a
uv-path. A graph is connected if every pair of vertices are connected. Otherwise,
we say that the graph is disconnected.
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Remark 39 If there exists a uv-walk or a uv-trail, then we also see that u and
v are connected. This is because, given a uv-walk, we can construct a uv-path
in the following way. Given a uv-walk, if any vertex is visited more than once,
we may remove the part of the walk between the �rst time the vertex is visited
and the last time. In this way, we may convert any uv-walk into a uv-path (if
an edge is traversed twice, then a vertex must be visited more than once).

De�nition 40 A subgraph H of G is a component if is not contained in any
connected subgraph.

De�nition 41 A uv-trail in which u = v which contains at least three edges is
called a circuit. A circuit which does not repeat any vertices is called a cycle.

Remark 42 Sometimes we will be lax in the de�nition of walk, trail, path, etc.
by labeling only the vertices or only the edges in the walk, etc.

De�nition 43 An edge e in a connected graph G is a bridge if G� e is discon-
nected.

Note: G� e is the graph gotten by removing the edge e from the graph.

Remark 44 There is also the notion of a cut vertex, a vertex v such that G�v
is disconnected. Here, G � v is the graph gotten by removing both the vertex
v and all edges incident on v: Note that G � v may have many components,
whereas G� e has either two components if e is a bridge or one component if it
is not.

We are now ready to prove the theorem
Proof of Theorem 34. First suppose e = uv 2 E (G) is contained in a cycle.
Then clearly u and v are connected in G � e since we take the complement of
e in the cycle. If we show that �x is connected to y in G� is an equivalence
relation, then this implies that e is not a bridge: Since x is connected to y in
G; there is a path P from x to y: If P does not contain e; then x is connected
to y in G � e: If P does contain e; we know that x is connected to u and y is
connected to v or vice versa. But since u is connected to v in G � e; then we
have that x is connected to y:
Now suppose that e is not contained in any cycle. That implies that there

is no path from u to v in G� e since otherwise, the concatenation with e would
be a cycle. Thus e is a bridge.
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